
NBA Player Standalone Game Performance Statistics, Player
Position Classification Modeling

ALEX SALCE, MATH574M | Fall 2023 | University of Arizona

Abstract
Background: Data was gathered for individual player standalone game performance from the offical NBA database using
nba_api Python client. The data was filtered by individual seasons from 2017-2023 to include only player performance
features, while excluding any physically identifying features and scaling any enumerated statistics (i.e. non-percentage
statistics) by time played in game. A response data set corresponding to the season performance data was generated based
upon a selected position (Center, Power Forward, Small Forward, Shooting Guard, Point Guard) and converting player
position to a 0/1 binary classification array where 1 indicates selected position and 0 indicates any other position than
selected.
Methods: A training data set was generated by first selecting a season (2017-2023), then by selecting the player position
of interest and generating a predictor matrix and binary response array. Test data was subsequently generated for each in-
dividual season excluding the training season by the same procedure. The training data would train a binary classification
model, which would then be used predict position classification using a test season and the misclassification rate would
then be calculated. Training error was also captured at each step. This process would be repeated for all other test sea-
sons. The binary classification models used were Linear Discriminant Analysis (LDA), and Logistic Regression. Features
selected from a Logistic Regression model were also used to re-filter training and test data to train a new LDA model for
analysis and subsequent rerun. Lastly, the filtered data would be used to generate the best AIC and BIC models, and the
selected features for the best models would be logged, the data refiltered, and subsequent analysis run once more.
Results: Logistic Regression exhibits best overall performance with this classification problem, but LDA performance
is comparable. Feature selection greatly reduced dimensionality and minimally impacted performance of LDA (although
there was a slight decrease in performance). Top 5 features were captured dynamically for each training data set in logistic
regression to give insight to important features for each position by season. All model results performed best in classifying
Centers and Shooting Guards and worst for Small Forwards.
Conclusions: All results made intuitive sense. Feature selection generally favored features that were subjectively reason-
able by position. Position classification performance alsomade sense; themodels did bestwith highly specialized positions
and did not do as well with positions that play a variety of roles in a game, and all performed similarly to each other by
distinct positon class.

Introduction

I have been a fan of the NBA for a long time. It’s a sport that is ever evolving, and not just players, strategy, and
talent. Data has also evolvedwith the sport, particularly in the last decade, as the powerof data analytics has been
unlocked. Entire companies are now dedicated to sports data and the NBA; sites like basketball-reference.com,
StatMuse, StatHead, and Cleaning the Glass are a few popular examples of sports data sites in the NBA fan
community. Second Spectrum, a sports data tech company, even has an official partnership with the NBA.
Clearly, data is highly valued in sports, and particularly so in basketball.

Today, there is so much more data being captured than a traditional box score; “hustle” stats, positional
tracking data and subsequent statistics, and “advanced” box scores to name a few. This new data describes
player and team performances in higher fidelity, giving much more descriptive insights for how players and
teams really play. And thankfully, much of this data has become accessible to the public. For this project, I
wanted to pursue some objective insights for large data sets; both high dimensional and with large sample sizes,
and the available NBA data seemed to lend itself well to this pursuit.

asalce@arizona.edu. University of Arizona. github.com/alexsalce.

1

https://statistics.arizona.edu/person/alex-salce
https://github.com/alexsalce

Motivation and Objective

My project goals were to build tools to collect NBA data, to refine what I collect, and most importantly to
leverage the methods we have learned and exercised throughout the semester to generate insightful analysis of
the data. In all, I desired a a flexible framework for analyzing any varieties of questions thatmight be interesting.
Given the size of the data, I felt that it made most sense to start small and approach the analysis of the data in
a practical and interpretable way. This meant that I should tackle a problem for which I have some intuition,
and in the process set up a framework which I can continue to leverage in the future. The question that seemed
most practical to start with this data was in the spirit of finding qualitative insights to these “advanced” stats:
How well can performance statistics can describe a player? Specifically, can performance statistics alone could
be used to identify a player’s position?

Terminology

NBA Reference

Links to resources for reference to NBA stats and position terminology.
• NBA Box Score
• Official NBA Stats Glossary (Advanced Stats)
• Basketball Position Descriptions
There are four collections of features that will be used for training and test data.
• Traditional Boxscore - Standard summary stats for each player per game (see “NBA Box Score” above)

• Hustle Stats - Stats that describe “effort” plays not captured by traditional boxscore (see “Hustle Stats”
above)

• Advanced Boxscore - “Advanced” stats that typically summarize performance calculated by other perfor-
mance inputs. Note, as we will see, some of these advanced stats, among others, are highly correlated
with other features.

• Player Tracking Stats - Summary statistics calculated from in-game player positional tracking data.

• NBA Seasons will be referenced by only their start year, i.e. the “2022” season is referencing the “2022-
2023” season.

• Player positions will may be referred to by number, where 1-PG, 2-SG, 3-SF, 4-PF, 5-C.

Code

Python code chunks add “>” to each line of code and have sand background color. R code chunks do not have
“>” and have default chunk background color.

Nomenclature

• Dimensions of the datawill be expressed in termsof thenumber of features (predictors)𝑝, and thenumber
of observations 𝑛. A training or test data matrix, for example, will have dimensions 𝑛×𝑝, and a response
array will have dimensions 𝑛 × 1.

• “Test Error” and “Train Error” describe the misclassification rates for model predictions against the true

2

https://jr.nba.com/how-to-read-a-box-score/
https://www.nba.com/stats/help/glossary
https://en.wikipedia.org/wiki/Basketball_positions
https://functionalbasketballcoaching.com/hustle-statistics/
https://en.wikipedia.org/wiki/Box_score#:~:text=Advanced%20team%20NBA%20box%20scores,the%201996%2D1997%20NBA%20Season.
https://en.wikipedia.org/wiki/Player_tracking_%28National_Basketball_Association%29#:~:text=Statistics%20collected%2C%20and%20available%20to,per%20touch%29%20and%20total%20touches.

response. Misclassification rate is defined as

1
𝑛

𝑛
∑
𝑖=1

|𝑦𝑖 − ̂𝑦𝑖|

Where 𝑦𝑖 is the training or test response data and ̂𝑦𝑖 is the predicted response data.

• “Binary Classification” and “binary classifiers” in this report implies 0/1 binary response assignment,
rather than −1/1 classification typical of some methods.

Data

Data collection, assembly, and refinement were among the most challenging aspects of the project. I was able
to find some great resources and ultimately produce a dataset with a satisfactory number of features and obser-
vations.

Please note that code chunks provided in this report are only to contextualize attached code and aid in
understanding functional approach. These chunks report only the core functionality, and accompanying code
will look somewhat different.

Data Collection

The data is sourced directly from the official NBA stats database, using a freely available API client package for
Python nba_api [GitHub]. The following endpoints were utilized for data collection.

• PlayerGameLog - Traditional Boxscore
• BoxScoreAdvancedV3 - Advanced Stats
• BoxScoreHustleV2 - Hustle Stats
• BoxScorePlayerTrackV3 - Player Tracking Stats
Toqueue the endpoints, a dictionary of playerswas built using the players static endpoint from theAPI client.

Note, for this project, I used only NBA players that are currently active to build my data from the endpoints.
Using the CommonPlayerInfo endpoint, I started with building a database of players and profile data (which
includes position).
> import pandas as pd
> from nba_api.stats.static import players
> from nba_api.stats.endpoints import commonplayerinfo
>
> nba_players = players.get_active_players()
> i=0
> nba_players_info = {}
> for player in nba_players:
> player_info = commonplayerinfo.CommonPlayerInfo(player_id=player['id'])
> nba_players_info[i] = player_info.get_data_frames()
> i = i+1
> #compile into df for csv export
> data=[]
> df=pd.DataFrame(data)
> for entry in nba_players_info:
> df_new = nba_players_info[entry][0]
> df = pd.concat([df,df_new], axis=0)
> df.to_csv(path_or_buf='C:/.../nbaplayers.csv')

3

https://pypi.org/project/nba_api/
https://github.com/swar/nba_api
https://github.com/swar/nba_api/blob/master/src/nba_api/stats/endpoints/
https://github.com/swar/nba_api/blob/master/docs/nba_api/stats/endpoints/playergamelog.md
https://github.com/swar/nba_api/blob/master/docs/nba_api/stats/endpoints/boxscoreadvancedv3.md
https://github.com/swar/nba_api/blob/master/docs/nba_api/stats/endpoints/boxscorehustlev2.md
https://github.com/swar/nba_api/blob/master/docs/nba_api/stats/endpoints/boxscoreplayertrackv3.md
https://github.com/swar/nba_api/blob/master/docs/nba_api/stats/static/players.md
https://github.com/swar/nba_api/blob/master/docs/nba_api/stats/endpoints/commonplayerinfo.md

Using this dictionary of active NBA players, each player’s stats were collected from endpoints for every
game the player had played for their entire career. An example of this data collection is provided below.
> #OMITTED: other imports
> from nba_api.stats.endpoints import boxscoreadvancedv3
>
> #OMITTED: existing data import, exception handling, building dictionaries, etc
>
> #get all advanced stats for active player games
> for GAME_ID in nba_games['Game_ID']:
> try:
> #OMITTED: some counter and status code
> #I needed to add a status ticker, the scrape took a long time to run
> #and I needed a visual to keep track
> player_playertrack = boxscoreplayertrackv3.BoxScorePlayerTrackV3(
> game_id=gameid).player_stats.data
> player_playertrack_df = pd.DataFrame(player_playertrack['data'])
> player_playertrack_df = player_playertrack_df.set_axis(
> player_playertrack['headers'],axis=1)
> df = pd.concat([df,player_playertrack_df], axis=0)
>
> #OMITTED: exception handling and export to CSV file

Some notes about the omitted portions of the code: Wherever possible, I would store data in a CSV and im-
port to keep consistent and avoid redundant scraping. There were some exceptions thrown for certain games
during the scrape, which I did not investigate and added to a dictionary/CSV to avoid trying to queue again
for subsequent data scrapes; they were filtered out of subsequent scrapes to keep all data consistent. Exception
handling was necessary as well as a visual progress meter; some of these scrapes took more than a few hours.
This process was repeated for each endpoint, and CSV files were generated for each set of generated data.

Data Assembly and Refinement

Once data was collected from each of the desired endpoints, a separate script joined all datasets on Player_ID
and Game_ID, which are unique player and game identifiers. Observations (entire rows) containing any NaN
data were dropped during the join.
> join_hustle_advanced = pd.merge(nbagames_hustledata,
> nbagames_player_advancedstats,
> how='left', left_on=['Player_ID','Game_ID'],
> right_on = ['personId','gameId'])
> #OMIT other joins
> df = join_allplayer.dropna(subset=['minutes_y'])

Lastly, some obviously redundant data was present, and removed “by hand” (using Excel) and stored as
‘nbaplayerdatafiltered.csv’ before being imported to R.
nbaplayerdata <- data.frame(read.csv("data/nba_api/nbaplayerdatafiltered.csv",

header = T))

Once imported in R, some final cleanup is applied before generating Training and Test Data, removing
games in which player logged no playing time, conversion of playing time to seconds, partitioning enumerated
stats and scaling by seconds played. This is stored in dataframe ’player.stats‘.
library(lubridate) #used to convert time played to seconds
OMITTED: basic filtering of non-performance
features and other redundancies, also removing

4

seasons prior to 2017 NOTE: 'player.stats' is
dataframe of filtered data convert 'minutes'
column to 'seconds
player.stats$minutes <- period_to_seconds(ms(format(as.POSIXct(parse_date_time(x =

player.stats$minutes,↪
c("HMS", "MS"))), format = "%M:%S")))

REMOVE any rows with no playing time
player.stats <- player.stats[-which(player.stats$MIN ==

0),]
any nans
player.stats <- na.omit(player.stats)
colnames(player.stats)[grep("minutes", colnames(player.stats))] <- "seconds"
OMITTED: additional redundant data filtering
partition enumerated stats to divide by time
played in game '...' omitted for cleanliness
stats.timenormal.headers <- c("FGM", "FGA", "FG3M",

"...")
stats.scaleby.time <- player.stats[, which(names(player.stats) %in%

stats.timenormal.headers)]
stats scaled by time; this dataframe is
combined with non-enumerated stats in test and
train dataframe gen function
player.stats.timenormal <- stats.scaleby.time/player.stats[,

grep("seconds", colnames(player.stats))]

Train and Test Data Generation

data.fn <- function(player.stats, player.stats.timenormal, seasons,
year, position, binary, threeclass) {
filter data by year
stats.player.year <- player.stats[player.stats$SEASON_ID ==

seasons[(2024 - year),],]
stats.player.year.timenormal <- player.stats.timenormal[player.stats$SEASON_ID ==

seasons[(2024 - year),],]
select all non-player characteristic data
x <- stats.player.year[, 24:ncol(stats.player.year)]
remove the columns that will be replaced by time
scaled data
x <- x[, -which(names(x) %in% stats.timenormal.headers)]
combine raw stats with time scaled stats
x <- data.frame(x, stats.player.year.timenormal)
get response data
y <- data.frame(stats.player.year$POSITION)
set selected position to 1 for response array
if (binary == TRUE) {

Center
if (position == 5) {

y[y == positions[2,]] <- 1

y.cv[y.cv == positions[2,]] <- 1
}
Center-Forward and Forward-Center ...OMIT other
IF statements

5

set others to 0
y[y != 1] <- 0
y <- mutate_all(y, function(x) as.numeric(as.character(x)))

}
out.data <- list(y, x)
return(out.data)

}

select year and position
train.year <- 2020
pos <- 3
run data gen function
train = data.fn(player.stats, player.stats.timenormal, seasons,

train.year, pos, TRUE, FALSE)
generate training data and response
x.train = train[[2]]
y.train = train[[1]]
TEST data generated similarly using for loop to gen data
for other seasons

Data Summary Statistics

Table 1:
Dataframe n p Description

nbaplayerdata 126742 122 full dataset captured from nba api
player.stats 126436 99 player stats post R processing
player.stats.timenormal 126436 45 filtered and time scaled stats
x.train x.test see Table 2 76 test and train data

Table 2:
Season n

2023-24 3255
2022-23 25774
2021-22 22704
2020-21 18125
2019-20 15836

2018-19 15507

Table 3:
Stat.Category p

Traditional Boxscore 19
Advanced Boxscore 22
Hustle Stats 15
Player Tracking Stats 20

Model Selection

Theoriginalmotivationwas to determine howwell amodel could differentiate a player’s position from the other
positions based solely uponperformance statistics froma standalone game. Additionally, themodel should have
interpretable results; it is important that we can extract some information regarding the features of the player’s

6

performance. Since I have intuition about the sport, having interpretable results would give me a baseline
evaluation for whether the model is telling me something reasonable or outrageous.

By nature, this is a classification problem, andwe could reasonably select amulticlass or binary classification
modeling approach. In this case, I wanted not only to be able to discern whether a player performs like other
players of their position in-game, but also to extract the features that best describe how other players of that
position are playing. This being the case, I decided to approach as a binary classification problem; the model
would classify whether or not a player played like other players for the particular position of interest. Lastly, for
themodel to be interpretable and return information about the features, candidatemodels should be supervised
learning methods.

Given these parameters, there were some different possibilities that I explored.

Not Selected

• Adaptive LASSO
– Pros: Feature Selection, Oracle Properties
– Cons: Prediction performance due to highly correlated predictors (exhibited in our data).

• Adaptive Elastic Net
– Pros: Handles collinearity issue better than adaptive LASSO.
– Cons: Not Oracle method, computation time, nonlinear shrinkage.

• SVM
– Pros: Prediction performance
– Cons: Non interpretable (hard classifier), computationally prohibitive for data size.

Selected

• Linear Discriminant Analysis (LDA)
– Pros: Soft classifier, computationally favorable
– Cons: Not robust against outliers, more assumptions about distribution of data

• Logistic Regression
– Pros: Soft classifier, Feature selection (significant predictors, information criteria), ̂𝛽 estimates are

consistent, distribution of ̂𝛽 converges (data set is large), more robust to outliers
– Cons: less computationally favorable

It is not toomuch of a stretch to assume that each feature is normally distributed; each performance statistic
is a measure of outcomes of random events in the game with some mean and variance that can be described by
the population of players at each position, so both methods make sense to proceed with analysis.

Model Evaluation and Results

Packages

data analysis libraries
library(MASS) #LDA function
library(lubridate) #date and time manipulation
library(dplyr) #data manipulation
library(PredPsych) #built in 5fold CV function for LDA
library(reshape2) #melt function used for data manipulation
library(leaps) #for bestglm
library(bestglm) #bestglm() function uses leaps and can output best AIC and BIC model, used for

AIC and BIC feature selection↪

7

Evaluation Procedure

• LDA and Logistic Regression
– Function ‘lda.analysis’ takes full player stats data as well as desired seasons for analysis, and the

desired player position (1 through 5) as inputs. The function loops through each season, generates
a train LDA object using ‘lda’ function, uses the train LDA object to generate a prediction array
ŷ𝑡𝑒𝑠𝑡, and compares to the true train response array ytrain to calculate TrainErr. A 5 fold CV error
is also computed with training data using ‘LinearDA’ function from the ‘PredPsych’ package. Then,
an embedded loop runs through the other seasons using the train LDA object and test data to
generate a ŷ𝑡𝑒𝑠𝑡 prediction array. The predicted array is compared to the true test response array
ytest to calculate TestErr. Results are returned in individual dataframes. TestErr dataframe column
corresponds to training season, each row logs TestErr for test season prediction with LDA trained
by training season.

– Function ‘glm.analysis’ uses same procedure for model fit and train & test error as ‘lda.analysis’,
using ‘glm’ function function for logistic regression fit. The function also evaluates which features
are significant for training fit and returns the features retained and dropped at an 𝛼 ≤ 0.05 level,
as well as top 5 features by significance.

– Function ‘fs.analysis’ takes same inputs as ‘lda.analysis’ and generates both a glm as well as an lda
training model object, and the computation time of fitting each model is captured. From the glm
object, the significant features at an 𝛼 ≤ 0.05 level are stored and the original training and test
data matrices are filtered to only the significant features. The logistic regression and LDA analyses
are then rerun using the same procedures in ‘glm.analysis’ and ‘lda.analysis’, also capturing the
computation time of the refit models. The function returns test and train errors for the rerun test
data as well as all computation times.

– Function ‘ic.analysis’ takes same inputs as ‘lda.analysis’ and generates a glm training model object.
From the glm object, the significant features at an 𝛼 ≤ 0.05 level are stored and the original train-
ing and test data matrices are filtered to only the significant features. Using the ‘bestglm’ function
from the ‘bestglm’ package (which utilizes ‘leaps’ package), the best models based on AIC and BIC
are returned, and the coefficients of the best model stored. Note, given the size of the training data,
the computation time for the ‘bestglm’ function can vary from 5 second to 5 minutes, depending
on the number of significant features from the original glm fit were retained. The AIC and BIC
models could not be generated in any reasonable amount of time without some prior feature se-
lection, hence using the initial feature screening. Due to some issues with code/time, only the
computation time of glm and LDA refits using the AIC and BIC features are captured.

Results

See accompanying file ‘MATH574M Final Results.xlsx’ for all results data
• Error Comparisons

– Figure 1 graphs summarize the average training and test error over all seasons by position, respec-
tively. The training error graph includes the mean training error and a 1-standard error bar that
captures the standard error within training error for a method by each position. The test error
graph includes a mean test error point, a smaller set of points for average test error for a particular
training model, and 1-standard error bars for each of these smaller points. Although a little noisy,

8

it captures the test standard error for each training year, and gives a visual for the test error bounds
of the results.

0.10

0.15

0.20

0.25

0.30

fsG
LM

fsL
DA

GLM

GLM
_A

IC

GLM
_B

IC
LD

A

LD
A_A

IC

LD
A_B

IC

Position

M
is

cl
as

si
fic

ai
to

n
R

at
e

Position

C

PF

PG

SF

SG

Train Error by Method

0.10

0.15

0.20

0.25

0.30

fsG
LM

fsL
DA

GLM

GLM
_A

IC

GLM
_B

IC
LD

A

LD
A_A

IC

LD
A_B

IC

Position

M
is

cl
as

si
fic

ai
to

n
R

at
e

Position

C

PF

PG

SF

SG

Test Error by Method

Figure 1: Methods Comparison

• Feature Selection
– Figure 2 “Feature Selection” summarizes the number of features selected by year for each feature

selection method, as detailed in the ‘Model Evaluation’ section.
– Figure 2 “Top Features” count features that appear in the top 5 for a position class by season for at

least 3 seasons for a given position to give a qualitative description of feature selection by position.

C
P

F
P

G
S

F
S

G

2018 2020 2022

10
20
30
40

10
20
30
40

10
20
30
40

10
20
30
40

10
20
30
40

Season

re
ta

in
ed

F
ea

tu
re

s

FS Method

glm_retained

AIC

BIC

Feature Selection

C
P

F
P

G
S

F
S

G

co
nt

es
te

dF
iel

dG
oa

lsA
tte

m
pt

ed

co
nt

es
te

dS
ho

ts2
pt

de
fe

ns
ive

Reb
ou

nd
Per

ce
nt

ag
e

FGA

re
bo

un
dC

ha
nc

es
Offe

ns
ive

to
uc

he
s

un
co

nt
es

te
dF

iel
dG

oa
lsA

tte
m

pt
ed

as
sis

tR
at

io

co
nt

es
te

dS
ho

ts

dis
ta

nc
e

DREB

FG3_
PCT

FG3A

FG3M

sc
re

en
Ass

ist
Poin

ts

sc
re

en
Ass

ist
s

se
co

nd
s

pa
ss

es

3
4
5
6
7

3
4
5
6
7

3
4
5
6
7

3
4
5
6
7

3
4
5
6
7

feature

co
un

t

Top Features

Figure 2: Feature Selection

• Computation Time
– Figure 3 summarizes the computation time of the model training for each season using features

selected by corresponding method.

9

C
P

F
P

G
S

F
S

G

2018 2020 2022

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Season

T
im

e
(s

)

FS Method

glmAllFeatures

glmSigFeatures

glmAIC

glmBIC

Computation Time

C
P

F
P

G
S

F
S

G

2018 2020 2022

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

Season

T
im

e
(s

)

FS Method

ldaAllFeatures

ldaSigFeatures

ldaAIC

ldaBIC

Computation Time

Figure 3: Computation Comparison

Comparisons and Conclusions

Error Comparisons

Overall, both the LDAandLogistic Regression perform fairlywell in identifying player position class fromgame
performance data. We can see that in general, feature selection does not impact performance substantially. The
standard error for training and test are also not alarming, the results are generally fairly stable.

There are some clear differences in the performance by position class, and I offer some of my own intuition
to at least gauge whether this seems reasonable..

• Model error performance by position

– Best: Centers and Shooting Guards (∼ 10% misclass)

For a typical basketball team, a Center is easy to spot due to their large stature. But the role that they
play within a game is also generally easier to discern than other positions; they are typically near the
basket, shooting close and contested shots at the rim, grabbing rebounds, and on defense covering the
other team’s center who is often doing the same. They are generally less athletic, quick, and often cannot
shoot well from very far away from the basket. It seems very reasonable that their performance stats are
rather distinct due to overall style of play.

ShootingGuardsmaybe a little less intuitive to a casual fan, but they often execute highly specialized roles
within a team’s strategy. They generally play “off ball” (they don’t have the ball in their hands much), set
screens, assist other players, and “catch-and-shoot” the ball more than other players. They are typically
not defensively dominant players generally due to physical limitations like size. So, it’s not surprising
that their performance statistics may be more distinct than other players.

– Fair: Power Forwards (∼ 15% misclass) and Point Guards (∼ 22% misclass)

Point Guards tend to have the ball the most in the game, and consequently they can have a large variety
of offensive statistical performance categories. They shoot, pass, and dribble more than most other po-
sitions, and often orchestrate how plays are executed. Defensively, they are often guarding other point
guards, and are consequently involved in many defensive actions as well. It is reasonable that, given the
variety of statistical categories that they may perform well in for a particular game, it’s reasonable to

10

believe that it may be more difficult to differentiate them.

Power forwards typically play similar roles to Centers, but are generally more athletic. They will often
be utilized to grab rebounds, to shoot near the basket, and play defense between the basket and the three
point line. There is a little more variety in how power forwards can perform since they can move around
the court more as compared to centers, so the classification error rate for this position makes sense.

– Worst: Small Forwards (∼ 31% misclass)

In the modern NBA, by far the most versatile position is the small forward. They generally have enough
size, skill, and athleticism to do just about anything that any other position can do. A great example
is LeBron James, who is listed as a small forward but can play virtually any position on the court. It’s
particularly unsurprising, then, that it would be most difficult to discern small forwards from the other
positions, so this result is entirely reasonable, but still does surprisingly well!

Feature Selection

We can see features selected for position by year vary, which may imply that some positions play the game a
little differently overall each year. The “Top Features” chart shows the features that recur between seasons (3 or
more seasons), and the results gave me qualitative confidence in the model’s performance, and also gave some
interesting insight into what features may best describe each position.

The top features for centerswere field goal attempts and 3 point field goal attempts; Centers take the smallest
number of shots of anyplayer overall, and especially the smallest number of 3 pointers. Guardplay featureswere
reasonable; point guards takemanyfield goal attempts, and generally have the ball themost, and shooting guards
set many screens offensively, and also shoot the ball. There was much more variety in the forward positions, so
it was a little harder to discern what performance stats were really “most descriptive”, but intuitively this is not
an unusual finding.

Computational Comparisons

Feature selection clearly improves computational performance over using all of the original features, however
there is not a huge benefit beyond the significant features for the further AIC and BIC refinement of the model
from a computational perspective. Given the size of the data, the computation time just to acquire the best
AIC and BIC model is prohibitive anyway. There are not statistics for these captured in this report, but the
time could vary from a few seconds to as long as several minutes to recover a model that may improve feature
selection by a small handful of features. LDA and logistic regression models are fairly quick to begin with, so
I felt that the best value procedurally was to just capture the significant features from the logistic regression
model and leave it at that.

Conclusions

Overall, LDA and logistic regression were quite reasonable models to address the original objective of player
classification by standalone game performance statistics. The findings were rather surprising to me in the sense
that theyweremuchmore reasonable and intuitive that I had expected based on previous experience during the
semester with these and other models/data sets. Although this problem itself is fairly novel, the framework that
this has provided for future analysis is of great value for my interests. There is certainly plenty of potential for
further analysis of these results and beyond, so I look forward to exploring this data in greater depth. Further

11

analysis using other nonparametric modeling approaches like random forests and PCA would fit some other
problems using this data nicely.

For reference, in the footnote of page 1 I provided my department webpage as well as my GitHub as links
for where I plan to store future analysis and any elaboration that I may pursue using this data.

References

• Macdonald, B. (2020). “Recreating the Game: Using Player Tracking Data to Analyze Dynamics in Bas-
ketball and Football” . Harvard Data Science Review, 2(4). https://doi.org/10.1162/99608f92.6e25c7ee

• Kubatko, Justin; Oliver, Dean; Pelton, Kevin; and Rosenbaum, Dan T. (2007) “A Starting Point for Ana-
lyzing Basketball Statistics,” Journal of Quantitative Analysis in Sports: Vol. 3 : Iss. 3, Article 1.

• Puranmalka, Keshav. “Modelling the NBA to make better predictions.” (2013).

• Jingru Wang and Qishi Fan (2021) “Application of Machine Learning on NBA Data Sets,” J. Phys.: Conf.
Ser. 1802 032036

• Santos, J., Mendez-Domínguez, C., Nunes, C., Gómez, M.A., Travassos, B. (2020) “Examining the key
performance indicators of all-star players and winning teams in elite futsal”, International Journal of
Performance Analysis in Sport, 20:1, 78-89.

• Hastie, Trevor„ et al. “The Elements of Statistical Learning: Data Mining, Inference, and Prediction”. 2nd
ed. New York, Springer, 2009.

12

https://doi.org/10.1162/99608f92.6e25c7ee

	Introduction
	Motivation and Objective
	Terminology
	NBA Reference
	Code
	Nomenclature

	Data
	Data Collection
	Data Assembly and Refinement
	Train and Test Data Generation
	Data Summary Statistics

	Model Selection
	Not Selected
	Selected

	Model Evaluation and Results
	Packages
	Evaluation Procedure
	Results

	Comparisons and Conclusions
	Error Comparisons
	Feature Selection
	Computational Comparisons
	Conclusions

	References

