
Distributions

1 Discrete Distributions

1.1 Bernoulli and Binomial

The Bernoulli distribution is the simplest case of the Binomial distribution, where we only have one trial
(n = 1). Let us say that X is distributed Bern(p). We know the following: A trial is performed with
probability p of �success�, and X is the indicator of success: 1 means success, 0 means failure.

Let us say that X is distributed Bin(n, p). We know the following: X is the number of �successes� that
we will achieve in n independent trials, where each trial is either a success or a failure, each with the same
probability p of success. We can also writeX as a sum of multiple independent Bern(p) random variables. Let
X ∼ Bin(n, p) and Xj ∼ Bern(p), where all of the Bernoullis are independent. Then X = X1+X2+ . . .+Xn.

1. PMF, MGF, mean and variance of X ∼ Binom(n, p)

(a) PMF:

f(x) =

(
n

x

)
px(1− p)n−x,

x = 0, 1, ...n

0 < p < 1

(b) MGF: MX(t) = [(1− p) + pet]n

(c) Mean and Variance:
E[X] = np, V ar(X) = np(1− p)

Figure 1.1: Bernoulli PMF (left) CDF (right)

2. Additive property

If for i = 1, 2, ..., k, Xi ∼ Binom(ni, p), then
∑k

i=1 Xi ∼ Binom(
∑k

i=1 ni, p)

3. Random sample X1, ..., Xn ∼ Ber(p) where p is target parameter: exponential family? su�cient
statistic? minimal su�cient statistic? complete statistic? Fisher information? UMVUE?

(a) Exponential family form: (1− p)n exp
(∑n

i=1 xilog
p

1−p

)
(b) Minimal su�cient and complete statistic:

∑n
i=1 Xi

(c) Fisher information: n
p(1−p)

(d) UMVUE: 1
n

∑n
i=1 Xi

(e) MLE p̂ = 1
n

∑n
i=1 Xi

4. Conjugate prior of p?

X|p ∼ Binom(n, p)

p ∼ beta(α, β).

Posterior distribution p|(X = x) ∼ beta(α+
∑n

i=1 xi, n+ β −
∑n

i=1 xi)
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5. Related Distributions

Figure 1.2: Bernoulli and Binomial related distributions

(a) If X ∼ Ber(p) then
∑n

i=1 Xi ∼ Bin(n, p)

(b) Poisson and Normal Approximations

i. Poisson Approximation (Casella example 2.3.13): for large n and small np, Binom(n, p)
d→

Pois(λ),where λ = np.

ii. Normal Approximation (via CLT): X
n follows approximate Normal distribution with mean p

and variance p(1−p)
n .

(c) Indicator Function - Ix∈A(x) ∼ Bern(p) where p = P (x ∈ A), and sum of n i.i.d indicators
(support A) ~Bin(n, p).

6. Example problems and key steps
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1.2 Poisson

Let us say that X is distributed Pois(X). We know the following: There are rare events (low probability
events) that occur many di�erent ways (high possibilities of occurences) at an average rate of λ occurrences
per unit space or time. The number of events that occur in that unit of space or time is X.

1. PMF, MGF, mean and variance of X ∼ Pois(λ)

(a) PMF:

f(x) =
λxe−λ

x!

x = 0, 1, ...

λ > 0

(b) MGF: MX(t) = exp(λ(et − 1))

(c) Mean and Variance:
E[X] = λ, V ar(X) = λ

Figure 1.3: Poisson PMF (left) CDF (right)

2. Random sample X1, ..., Xn ∼ Pois(λ) where λ is target parameter: exponential family? su�cient
statistic? minimal su�cient statistic? complete statistic? Fisher information? UMVUE?

(a) Exponential family form:
n∏

i=1

[xi!]
−1 ·e−nλ exp (

∑n
i=1 xi log λ)

(b) Minimal su�cient and complete statistic:
∑n

i=1 Xi

(c) Fisher information: n
λ

(d) UMVUE: 1
n

∑n
i=1 Xi

(e) MLE λ̂ = 1
n

∑n
i=1 Xi

3. Conjugate prior of λ?

X|λ ∼ Pois(λ)

λ ∼ Gamma(α, β)

Posterior distribution λ|(X = x) ∼ Gamma(α+
∑n

i=1 xi,
1

n+ 1
β

)

Note, above is if Gamma pdf is written as f(x) = 1
Γ(α)βαx

α−1e−
x
β

If Gamma pdf is written as f(x) = βα

Γ(α)x
α−1e−xβ then posterior distribution is written as λ|(X = x) ∼

Gamma(α+
∑n

i=1 xi, n+ β)
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4. Related Distributions

Figure 1.4: Poisson and related distributions

(a) Additive property

i. For Xi
ind∼ Pois(λi), then

∑k
i=1 Xi ∼ Pois(

∑k
i=1 λi)

(b) Relation to Binomial distribution

i. If X ∼ Pois(λx) and Y ∼ Pois(λy) and they are independent, then X|X + Y = n ∼
Binom

(
n, λx

λx+λy

)
(c) Normal Approximation (via CLT)

i. If X ∼ Pois(λ) then Z = X−λ√
λ

d→ N(0, 1) for n → ∞

5. Example problems and key steps
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1.3 Negative Binomial

Let us say that X is distributed NBin(r, p). We know the following: X is the number of �failures� that we
will have before we achieve our rth success. Our successes have probability p.

1. PMF, MGF, mean and variance of X ∼ NegBinom(r, p)

(a) PMF:

f(x) =

(
x+ r − 1

x

)
pr(1− p)x

x = 0, 1, ...n

0 < p < 1

(b) MGF: MX(t) =
(

p
1−(1−p)et

)r
, t < − log p

(c) Mean and Variance:

E[X] =
r(1− p)

p
, V ar(X) =

r(1− p)

p2

Figure 1.5: Negative Binomial PMF

2. Additive property

If for i = 1, 2, ..., k, Xi
ind∼ NegBinom(ri, p), then

∑k
i=1 Xi ∼ NegBinom(

∑k
i=1 ri, p)

3. Random sampleX1, ..., Xn
i.i.d∼ NegBinom(r, p) where p is target parameter and r is known: exponential

family? su�cient statistic? minimal su�cient statistic? complete statistic? Fisher information?
UMVUE?

(a) Exponential family form:
n∏

i=1

(
xi+r−1

xi

)
·pnr exp (

∑n
i=1 xi log(1− p))

(b) Minimal su�cient and complete statistic:
∑n

i=1 Xi

(c) Fisher information: nr
p2(1−p)

(d) UMVUE:

i. 1−p
p :

∑n
i=1 xi

nr

ii. pr: P (Xi = 0), E(Xi = 0|
∑n

i=1 Xi), E(
∑n

i=1 xi) =
nr(1−p)

p

T = I(Xi=1)(Xi) where E(T ) = P (Xi = 1) = pr. Let S =
∑n

i=1 Xi and consider E[T |S] (Rao
Blackwell).

E[T |S] = E[T = 1|S = s] =
pt
(
s−t−1
r−t−1

)
pr−t(1− p)s−r(

s−1
r−1

)
pr(1− p)s−r

=
(s− t− 1)!(r − 1)!

(s− 1)!(r − t− 1)!
is UMVUE

4. Conjugate prior of p?

X|p ∼ NegBinom(r, p)

p ∼ beta(α, β).

Posterior distribution p|(X = x) ∼ beta(α+ nr, β +
∑n

i=1 xi)
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5. Related Distributions

Figure 1.6: Negative Binomial and related distributions

(e) If X ∼ NegBinom(r, p) for r = 1, it becomes geometric distribution with succss probability p

(f) With p = r
r+λ , with X ∼ NegBinom(r, r

r+λ ), then X
d→ Pois(λ) for r → ∞.

6. Example problems and key steps
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1.4 Geometric***

Let us say that X is distributed Geom(p). We know the following: X is the number of �failures� that we
will achieve before we achieve our �rst success. Our successes have probability p.

Number of Bernoulli trials before a success. (Negative binomial with r = 1)

1. PMF, MGF, mean and variance of X ∼ Geom(p)

(a) PMF:

i. x trials before �rst success:
f(x) = p(1− p)x−1

x = 1, 2, ...

0 < p < 1

ii. x failures before �rst success:
f(x) = p(1− p)x

x = 0, 1, 2, ...;

0 < p < 1

(b) CDF:

i. x trials before �rst success: F (t) = 1− (1− p)t, t = 1, 2, ...

ii. x failures before �rst success: F (t) = 1− (1− p)t+1, t = 0, 1, 2, ...

(c) MGF: MX(t) =
(

pet

1−(1−p)et

)r
, t < − log(1− p)

(d) Mean and Variance:

E[X] = 1
p , V ar(X) = (1−p)

p2 for f(x) = p(1− p)x−1, x = 1, 2, ...

E[X] = 1−p
p , V ar(X) = (1−p)

p2 for f(x) = p(1− p)x, x = 0, 1, 2, ...

Figure 1.7: Geometric PMF (left) CDF (right)

2. Random sample X1, ..., Xn
i.i.d∼ Geom(p) where p is target parameter: exponential family? su�cient

statistic? minimal su�cient statistic? complete statistic? Fisher information? UMVUE?

(a) Exponential family form:
(

p
1−p

)n
exp (

∑n
i=1 xi log(1− p)) for f(x) = p(1− p)x−1, x = 1, 2, ...

(b) Minimal su�cient and complete statistic:
∑n

i=1 Xi

(c) Fisher information: n
p2(1−p)

(d) UMVUE:

i. 1
p :

∑n
i=1 xi

n for f(x) = p(1− p)x−1, x = 1, 2, ...

ii. 1−p
p :

∑n
i=1 xi

n for f(x) = p(1− p)x, x = 0, 1, 2, ...

i. p:
∑n

i=1 xi ∼ NegBin(n, p) is su�cient and complete, by L-S UMVUE is
(n− 1)

(n− 1 +
∑n

i=1 xi)

E
(

(n−1)
(n−1+nX̄)

)
=
∑∞

k=0
(n−1)

(n−1+k)

(
n+k−1

k

)
pn(1− p)k =

∑∞
k=0

(n−1)
(n−1+k)

(n+k−1)!
(n−1)!k! p

n(1− p)k∑∞
k=0

(n+k−2)!
(n−2)!k! p

n(1− p)k = p
∑∞

k=0

(
n+k−2

k

)
pn−1(1− p)k = p
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3. Conjugate prior of p?

X|p ∼ Geom(p)

p ∼ beta(α, β).

Posterior distribution p|(X = x) ∼ beta(α+ n, β +
∑n

i=1 xi − n)

4. Related Distributions

Figure 1.8: Geometric and related distributions

(a) If X ∼ Geom(p) then
∑r

i=1 Xi ∼ NegBinom(r, p)

(b) If X ∼ Geom(p1) and Y ∼ Geom(p2) are independent, and Z = min(X,Y ), then Z ∼ Geom(1−
[1− p1][1− p2])

5. Example problems and key steps
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1.5 Hypergeometric

In a population of M desired objects and N undesired objects, x is the number of �successes� we will have in
a draw of K objects, without replacement. The draw of K objects is assumed to be a simple random sample
(all sets of K objects are equally likely).

1. PMF, MGF, mean and variance of X ∼ Hypergeometric(N,M,K)

(a) PMF:

P (X = x|N,M,K) =

(
M
x

)(
N−M
K−x

)(
N
K

)
x = 0, 1, ...,K and max(0,K +M −N) ≤ x ≤ min(M,K)

M ∈ {0, 1, 2, ..., N},K ∈ {0, 1, 2, ..., N}, N ∈ {0, 1, 2...}

(b) MGF: MX(t) =
(N−M

K ) 2F1(−K,−M ;N−M−K+1;et)
(NK)

(c) Mean and Variance:

E[X] =
KM

N
, V ar(X) =

KM

N

(
(N −M)(N −K)

N(N − 1)

)

Figure 1.9: Hypergeometric PMF (left) CDF (right)

2. Random sample X1, ..., Xn
i.i.d∼ HGeom(N,M,K) where p is target parameter: exponential family?

su�cient statistic? minimal su�cient statistic? complete statistic? Fisher information? UMVUE?**

(a) Exponential family form:

(b) Minimal su�cient and complete statistic: **

(c) Fisher information: **

(d) UMVUE:

3. Conjugate prior of p?

X|N,M,K ∼ HGeom(N,M,K)

p ∼ BetaBin(n, α, β).

Posterior distribution p|(X = x) ∼ BetaBin(?)
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4. Related Distributions

Figure 1.10: Hypergeometric and related distributions

If X ∼ Hypergeometric(N,M,K) and p = M
N

(a) If K = 1 then X ∼ Ber(p = M
N )

(b) If Y ∼ Bin(n, p) then Y models the number of successes in the analagous sampling problem with

replacement. If N and M are large compared to K, and p is not close to 0 or 1, then X and Y
have similar distributions, i.e. P (X ≤ c) ≈ P (Y ≤ c).

(c) If K is large and M and N are large compared to K, and p is not close to 0 or 1, then P (X ≤

x) ≈ Φ

(
x−Kp√
Kp(1−p)

)
5. Example problems and key steps
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2 Continuous Distributions

2.1 Continuous Uniform

Let us say that U is distributed Unif(a, b). We know the following: Properties of the Uniform For a
Uniform distribution, the probability of a draw from any interval within the support is proportional to the
length of the interval.

1. PDF, CDF, MGF, mean and variance of X ∼ Unif(a, b)

(a) PDF:

f(x) =
1

b− a

a ≤ x ≤ b

a ∈ R, b ∈ R

(b) CDF: f(t) = x−a
b−a

a ≤ t ≤ b

a ∈ R, b ∈ R

(c) MGF: MX(t) = ebt−eat

(b−a)t

(d) Mean and Variance:

E[X] =
a+ b

2
, V ar(X) =

(b− a)2

12

Figure 2.1: Uniform PDF (left) CDF (right)

2. Random sample X1, ..., Xn ∼ Unif(0, b) where b is target parameter: exponential family? su�cient
statistic? minimal su�cient statistic? complete statistic? Fisher information? UMVUE?

(a) Not exponential family

(b) Scale family: the standard distribution is Unif(0, 1) and Xi

b ∼ Unif(0, 1) (b is the scale parameter)

(c) Minimal su�cient and complete statistic: X(n)

(d) Fisher information: n
b2

(e) UMVUE: n+1
n X(n) whose variance is b2

n(n+2) less than CRLB, indicating C-R inequality is not

applicable for this population. (read Casella example 7.3.13)

3. Random sample X1, ..., Xn ∼ Unif(a, b) where a, b are target parameters: exponential family? su�cient
statistic? minimal su�cient statistic? complete statistic? Fisher information? UMVUE?

(f) Not exponential family

(g) Scale family: the standard distribution is Unif(0, 1) and Xi−a
b−a ∼ Unif(0, 1) (a is the location

parameter and b− a is the scale parameter)

11
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(h) Minimal su�cient and complete statistic: (X(1), X(n)).

(i) MLE of a is X(1) and MLE of b is X(n). MLE of θ = b − a is θ̂ = X(n) − X(1) by invariance
property of MLE.

4. Related Distributions

Figure 2.2: Uniform related distributions

(j) If X ∼ Unif(a, b) then single order statistics (Casella example 5.4.5):
X(j)−a

b−a ∼ Beta(j, n− j+1)*

(k) If X ∼ Unif(0, 1), then −λ logX ∼ EXP(λ) (λ is scale parameter)

(l) Bivariate order statistics (assuming i < j):
(

X(i)−a

b−a ,
X(j)−a

b−a

)
∼ Dir(i, j − i, n − j + 1) (Casella

exercise 4.40 for Dirichlet distribution)

5. Example problems and key steps
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2.2 Gamma

Let us say that X is distributed Gamma(a, β). We know the following: You sit waiting for shooting stars,
where the waiting time for a star is distributed EXP(β). You want to see n shooting stars before you go
home. The total waiting time for the nth shooting star is Gamma(n, β).

1. PDF, MGF, mean and variance of X ∼ Gamma(α, β), α, β > 0, β is the scale parameter.

(a) PDF:

f(x) =
1

Γ(α)βα
xα−1e−

x
β

x > 0

α > 0, β > 0

(b) MGF: MX(t) = (1− βt)
−α

, t < 1
β

(c) Mean and Variance:
E[X] = αβ, V ar(X) = αβ2

Figure 2.3: Gamma PDF (left) CDF (right)

2. Additivity and Scaling

(a) If Xi
ind∼ Gamma(αi, β), then

∑k
i=1 Xi ∼ Gamma(

∑k
i=1 αi, β)

(b) If X ∼ Gamma(α, β) then cX ∼ Gamma(α, cβ)

3. Random sample X1, ..., Xn
i.i.d∼ Gamma(α, β) where β is target parameter and α is known: exponential

family? su�cient statistic? minimal su�cient statistic? complete statistic? Fisher information?
UMVUE?

(c) Exponential family form:

n∏
i=1

xα−1
i · (Γ(α)βα)

−1
exp

(
− 1

β

n∑
i=1

xi

)

(d) Scale family: the standard distribution is Gamma(α, 1) and Xi

β ∼ Γ(α, 1)

(e) Minimal su�cient and complete statistic:
∑n

i=1 Xi

(f) Fisher information: nα
β2

(g) UMVUE: 1
nα

∑n
i=1 Xi

13
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4. Related Distributions

Figure 2.4: Gamma related distributions

(h) If X ∼ Gamma(α, β), for α = 1, X ∼ Exp(β)

(i) Pivot: If X ∼ Gamma(α, β), for α = n
2 , β = 2, X ∼ χ2

n*

(j) If X ∼ Gamma(α, θ) and Y ∼ Gamma(β, θ) are independent, then Z = X
X+Y ∼ Beta(α, β)

(k) If X ∼ Gamma(α, β), for large α X converges in distribution to N(αβ, αβ2)

(l) If X ∼ Gamma(α, β), then 1
X ∼ InvGamma(α, 1

β )

5. Example problems and key steps

(m) Example You are at a bank, and there are 3 people ahead of you. The serving time for each
person is Exponential with mean 2 minutes. Only one person at a time can be served. The
distribution of your waiting time until it's your turn to be served is Gamma(3, 12).

6. Other notes

(n) Gamma is sometimes considered the continuous analog of the negative binomial distribution
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2.2.1 Inverse Gamma

If X ∼ Gamma(α, β), then 1
X ∼ InvGamma(α, 1

β )

1. PDF, CDF,MGF, mean and variance of X ∼ InvGamma(α, β), α, β > 0, β is the scale parameter.

(a) PDF:

f(x) =
βα

Γ(α)
(x)−(α+1)e−

β
x

x > 0

α > 1, β > 0

(b) CDF:

Γ(α, β
x )

Γ(α)

(a) MGF: DNE

(b) Mean and Variance:

E[X] =
β

α− 1
, V ar(X) =

β2

(α− 1)2(α− 2)
α > 2

Figure 2.5: Inverse Gamma PDF (left) CDF (right)

2. Scaling

(a) If X ∼ InvGamma(α, β) then cX ∼ Gamma(α, cβ) for c > 0

3. Random sample X1, ..., Xn
i.i.d∼ Gamma(α, β) where β is target parameter and α is known: exponential

family? su�cient statistic? minimal su�cient statistic? complete statistic? Fisher information?
UMVUE?

(b) Exponential family form:

n∏
i=1

x
−(α+1)
i ·

(
βα

Γ(α)

)
exp

(
−β

n∑
i=1

1

xi

)

(c) Scale family: the standard distribution is InvGamma(α, 1)

(d) Minimal su�cient and complete statistic:
∑n

i=1
1
Xi

(e) Fisher information: TBD
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(f) UMVUE: TBD

4. Related Distributions

(g) If X ∼ Gamma(α, β), then 1
X ∼ InvGamma(α, 1

β )

(h) If X ∼ InvGamma(1, c) then 1
X ∼ EXP (c)
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2.3 Normal

1. PDF, MGF, mean and variance of X ∼ N(µ, σ2)

(a) PDF:

f(x) =
1√
2πσ2

e−
(x−µ)2

2σ2

−∞ < x < ∞

−∞ < µ < ∞

σ > 0

(b) MGF: MX(t) = exp(µt+ σ2t2

2 )

(c) Mean and Variance:
E[X] = µ, V ar(X) = σ2

Figure 2.6: Normal PDF (left) CDF (right)

2. Linearity and additivity

(a) If X ∼ N(µ, σ2), then aX + b ∼ N(aµ+ b, a2σ2)

(b) If X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2) and X1, X2 are independent, then X1 ± X2 ∼ N(µ1 ±

µ2, σ
2
1 + σ2

2).

3. Population X1,...,Xn
i.i.d∼ N(µ, σ2

0) (µ is unknown and σ2
0 is known)

(c) Exponential family form: (2πσ2
0)

−n
2 exp

(
−n µ2

2σ2
0

)
exp

(
−
∑n

i=1
x2
i

2σ2
0

)
exp

(
µ
σ2
0

∑n
i=1 xi

)
(d) Location family: the standard distribution is N(0, σ2

0) and Xi − µ ∼ N(0, σ2
0).

(e) Minimal su�cient and complete statistic:
∑n

i=1 Xi

(f) Fisher information: n
σ2
0

(g) UMVUE: 1
n

∑n
i=1 Xi

(h) Conjugate prior of µ ∼ N(a, b2)

X|µ ∼ N(µ, σ2
0)

µ ∼ N(a, b2)

Posterior distribution µ|(X = x) ∼ N
((

a
b2 + nx̄

σ2
0

)(
b2σ2

0

σ2
0+nb2

)
,
(

b2σ2
0

σ2
0+nb2

))
4. Population X1,...,Xn

i.i.d∼ N(0, σ2) (σ2 is unknown)

(i) Exponential family form:

(2πσ2)−
n
2 exp

(
− 1

2σ2

n∑
i=1

x2
i

)

17
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(j) Scale family: the standard distribution is N(0, 1) and Xi

σ ∼ N(0, 1).

(k) Minimal su�cient and complete statistic:
∑n

i=1 X
2
i

(l) Fisher information: n
2σ4

(m) UMVUE: 1
n

∑n
i=1 X

2
i

(n) Conjugate prior of 1
σ2 ∼ Gamma(α, β)

X|σ2 ∼ N(0, σ2)

σ2 ∼ InvGamma(α, β)

Posterior distribution σ2|(X = x) ∼ InvGamma
(
α+ n

2 ,
1

1
2

∑n
i=1 X2

i +
1
β

)
5. Population X1,...,Xn

i.i.d∼ N(µ, σ2) (µ is unknown and σ2 is unknown)

(o) Exponential family form:

(2πσ2)−
n
2 exp

(
−n

µ2

2σ2

)
exp

(
µ

σ2

n∑
i=1

xi −
1

2σ2

n∑
i=1

x2
i

)

(p) Location-Scale family: the standard distribution is N(0, 1) and Xi−µ
σ ∼ N(0, 1).

(q) Minimal su�cient and complete statistic:
(∑n

i=1 Xi,
∑n

i=1 X
2
i

)
(r) Fisher information: I = diag( n

σ2 ,
n

2σ4 )

(s) UMVUE:
(
X̄, S2

)
(t) Conjugate prior of µ ∼ N(a, b2), σ2 ∼ InvGamma(α, β) or 1

σ2 ∼ Gamma(α, β)

6. Related Distributions

Figure 2.7: Normal related distributions
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(u) For X1, ..., Xn
i.i.d∼ N(0, 1),

∑n
i=1 X

2
i ∼ χ2

n

(v) For X1, ..., Xn
i.i.d∼ N(µ, σ2):

i. X̄ ∼ N(µ, σ2

n )

ii. S2

σ2 ∼ χ2
n−1 where S2 = 1

n−1

∑n
i=1(Xi − X̄)2

iii. X̄ and S2 are independent and X̄−µ√
S2/n

∼ tn−1

(w) If Z ∼ N(0, 1), Y ∼ χ2
n and they are independent, then X = Z√

Y/n
∼ tn

(x) If Y ∼ χ2
n , Z ∼ χ2

m and they are independent, then X = Y
Z ∼ Fn,m

(y) If X ∼ N(µ, σ2), then exp(X) ∼ logN(µ, σ2)

(z) If X1 ∼ N(0, 1) and X2 ∼ N(0, 1) are independent then X1

X2
∼ Cauchy(0, 1)

7. Example problems and key steps
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2.4 Exponential

Let us say that X is distributed EXP(β). We know the following: You're sitting on an open meadow right
before the break of dawn, wishing that airplanes in the night sky were shooting stars, because you could
really use a wish right now. You know that shooting stars come on average every 15 minutes, but a shooting
star is not �due� to come just because you've waited so long. Your waiting time is memoryless; the additional
time until the next shooting star comes does not depend on how long you've waited already.

1. PDF, CDF, MGF, mean and variance of X ∼ Exp(β), β > 0

(a) PDF:

f(x) =
1

β
e−

x
β

x > 0

(b) CDF: f(x) = (1− e−
x
β ) · I[0,∞)(x)

(c) MGF: MX(t) =(1− βt)−1

(d) Mean and Variance:
E[X] = β, V ar(X) = β2

Figure 2.8: Exponential PDF (left) CDF (right)

2. Random sample X1, ..., Xn ∼ Exp(β) where β is target parameter: exponential family? su�cient
statistic? minimal su�cient statistic? complete statistic? Fisher information? UMVUE?

(a) Exponential family: (
1

β

)n

exp

(
− 1

β

n∑
i=1

xi

)

(b) Scale family: The standard distribution is Exp(1) and Xi

β ∼ Exp(1)

(c) Minimal su�cient and complete statistic:
∑n

i=1 Xi

(d) Fisher information: n
β2

(e) UMVUE: 1
n

∑n
i=1 Xi

3. Related Distributions
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Figure 2.9: Exponential and related distributions

� If X ∼ Laplace(µ, 1
β ), then |X − µ| ∼ Exp(β) (Laplace is double exponential)

� λ1X1 − λ2X2 ∼ Laplace(0, 1)*

� If X ∼ Pareto(1, λ), then log(X) ∼ Exp(λ)

� If Xi ∼ Unif(0, 1), then lim
n→∞

nmin(X1, ..., Xn) ∼ Exp(1)*

� Limit of a scaled Beta distribution lim
n→∞

nBeta(1, n) ∼ Exp(1)

If X ∼ Exp(λ) and Xi ∼ Exp(λi)

� kX ∼ Exp
(
λ
k

)
, closure under scaling by a positive factor*

� kex ∼ Pareto (k, λ)

� e−X ∼ Beta (λ, 1)

�

√
X ∼ Rayleigh

(
1√
2λ

)
� X ∼ Weibull

(
1
λ , 1
)

� X2 ∼ Weibull
(

1
λ2 ,

1
2

)
� min(X1, ..., Xn) ∼ Exp(λ1, ..., λn)

If also λi = λ

�

∑k
i=1 Xi ∼ Gamma(k, λ) or if β parameter then ∼ Gamma(k, 1

β )*

� X ∼ Exp(β) is equivalent to X ∼ Gamma(1, β)

� T=
∑n

i=1 Xi, then 2λT ∼ χ2
2n*

� Xi −Xj ∼ Laplace(0, λ−1)

If also Xi are independent, then

�
Xi

Xi+Xj
∼ Unif(0, 1)*

� Z = λiXi

λjXj
has pdf fZ(z) =

1
(z+1)2 . This can be used as a con�dence interval for λi

λj

If also λ = 1
2 then X ∼ χ2

2, a chi squared distribution with two degrees of freedom, hence*

� Exp(λ) = 1
2λExp(

1
2 ) ∼

1
2λχ

2
2 so

∑n
i=1 Exp(λ) ∼

1
2λχ

2
2*

� If X ∼ Exp( 1λ ) and Y |X ∼ Pois(X) then Y ∼ Geom( 1
1+λ )

4. Example problems and key steps
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(f) Example The waiting time until the next shooting star is distributed EXP(4) hours. Here β = 4
is the rate parameter, since shooting stars arrive at a rate of 1 per 1/4 hour on average. The
expected time until the next shooting star is 1/β = 1/4 hour.

(g) Memorylessness The Exponential Distribution is the only continuous memoryless distribution.
The memoryless property says that for X ∼ EXP(λ)and any positive numbers s and t,

P (X > s+ t|X > s) = P (X > t)

Equivalently,
X − a|(X > a) ∼ EXP(λ)

For example, a product with an EXP(λ) lifetime is always �as good as new� (it doesn't experience
wear and tear). Given that the product has survived a years, the additional time that it will last
is still EXP(λ).
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2.5 Beta

1. PDF, MGF, mean and variance of X ∼ Beta(α, β), α, β > 0, α, β are shape parameters.

(a) PDF:

f(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 =

xα−1(1− x)β−1

B(α, β)

1 > x > 0

α > 0, β > 0

(b) Mean and Variance:

E[X] =
α

α+ β
, V ar(X) =

αβ

(α+ β)2(α+ β + 1)

Figure 2.10: Beta PDF (left) CDF (right)

2. Random sample X1, ..., Xn
i.i.d∼ Beta(α, β) where α, β are target parameters: exponential family?

su�cient statistic? minimal su�cient statistic? complete statistic? Fisher information? UMVUE?

(a) Exponential family form:

exp

[
(α− 1)

n∑
i=1

log xi + (β − 1)

n∑
i=1

log(1− xi) + n log
Γ(α+ β)

Γ(α)Γ(β)

]

(b) Minimal su�cient and complete statistic: T = (
∑n

i=1 logXi,
∑n

i=1 log(1−Xi))

(c) Conjugate prior to the Binomial

X|p ∼ Bin(n, p)

p ∼ Beta(a, b)

Posterior distribution: p|(X = x) ∼ Beta(a+ x, b+ n− x)

(d) For β known, the MLE of α
∑n

i=1 logXi

(e) For α known, the MLE of β TBD ∗ ∗ ∗ ∗

3. Related Distributions
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Figure 2.11: Beta related distributions

(f) If X ∼ Beta(α, β) then 1−X ∼ Beta(β, α)

(g) Pivot: If X ∼ Beta(n2 ,
m
2 ) with n > 0,m > 0, then mX

n(1−X) ∼ F (n,m)

(h) If X ∼ Beta(α, 1) then − ln(X) ∼ EXP(α)

(i) For large n, ifXn ∼ Beta(nα, nβ) then
√
n(X̄n− a

a+β )
d→ N(0, aβ

(a+β)3 ), or similarly Beta(nα, nβ)
d→

N( a
a+β ,

aβ
(a+β)3 )

(j) If X ∼ χ2
α and Y ∼ χ2

β are independent, then X
X+Y ∼ Beta(α2 ,

β
2 )

(k) If X ∼ Unif(0, 1) and α > 0 then X
1
α ∼ Beta(α, 1)

(l) If X ∼ Unif(a, b) then single order statistics (Casella example 5.4.5):
X(j)−a

b−a ∼ beta(j, n− j+1)*

(m) If X ∼ Gamma(α, θ) and Y ∼ Gamma(β, θ) are independent, then Z = X
X+Y ∼ Beta(α, β)*

(n) If X ∼ Cauchy(0, 1) then 1
1+X2 ∼ Beta( 12 ,

1
2 )

4. Example problems and key steps

� Determine a minimal su�cient statistic if α = 2β

exp
[
(2β − 1)

∑n
i=1 log xi + (β − 1)

∑n
i=1 log(1− xi) + n log Γ(3β)

Γ(2β)Γ(β)

]
= exp

[∑n
i=1 log xi + (β − 1)

∑n
i=1 log x

2
i (1− xi) + n log Γ(3β)

Γ(2β)Γ(β)

]
,

which is exponential family with minimal su�cient statistic
∑n

i=1 log x
2
i (1−xi) = 2T1+T2 where

T = (
∑n

i=1 logXi,
∑n

i=1 log(1−Xi))

� Determine a minimal su�cient statistic if α = β2

pβ(x) = exp
[
(β2 − 1)T1(x) + (β − 1)T2(x) + n log Γ(β+β2)

Γ(β)Γ(β2)

]
use Lehmann Sche�e to show min

su�cient that T (x) = T (y)

5. Other notes
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2.6 Log-normal*

In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a
random variable whose logarithm is normally distributed. Thus, if the random variable X is log-normally
distributed, then Y = ln(X) has a normal distribution. Equivalently, if Y has a normal distribution, then
the exponential function of Y , X = exp(Y ), has a log-normal distribution. A random variable which is log-
normally distributed takes only positive real values. It is a convenient and useful model for measurements in
exact and engineering sciences, as well as medicine, economics and other topics (e.g., energies, concentrations,
lengths, prices of �nancial instruments, and other metrics).

1. PDF, MGF, mean and variance of X ∼ LN(µ, σ2)

(a) PDF:

f(x) =
1

x
√
2πσ2

e−
(log x−µ)2

2σ2

0 < x < ∞

−∞ < µ < ∞

σ > 0

(b) MGF: DNE

(c) Mean and Variance:

E[X] = θ = eµ+
σ2

2 , V ar(X) = θ2(eσ
2

− 1)

Figure 2.12: Log Normal PDF (left) CDF (right)

2. Multiple, Reciprocal, Power

(a) If X ∼ LN(µ, σ2), then aX ∼ LN(µ+ ln a, σ2) for a > 0

i. If X ∼ LN(µ, σ2), then 1
X ∼ LN(−µ, σ2)

ii. If X ∼ LN(µ, σ2), then If Xa ∼ LN(aµ, a2σ2)

iii. If X1, ..., Xn
i.i.d∼ LN(µi, σ

2
i ) then Y =

n∏
i=1

Xi ∼LN(
n∑

i=1

µi,
n∑

i=1

σ2
i )

3. Population X1,...,Xn
i.i.d∼ LN(µ, σ2) (µ is unknown and σ2 is unknown)

(a) Exponential family form: (x)−
n
2 (2πσ2)−

n
2 exp

(
−n µ2

2σ2

)
exp

(
µ
σ2

∑n
i=1 log xi − 1

2σ2

∑n
i=1 log x

2
i

)
(b) The standard distribution is LN(0, 1)
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(c) Minimal su�cient and complete statistic:
(∑n

i=1 logXi,
∑n

i=1 logX
2
i

)
(d) Fisher information: I = diag( 1

σ2 ,
2
σ2 )

(e) MLE µ̂ =

∑n
i=1 logXi

n
, σ̂2 =

∑n
i=1(logXi − µ̂)2

n
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2.7 Weibull*

In probability theory and statistics, the Weibull distribution is a continuous probability distribution. It
models a broad range of random variables, largely in the nature of a time to failure or time between events.
Examples are maximum one-day rainfalls and the time a user spends on a web page.

1. PDF, CDF, MGF, mean and variance of X ∼ Weibull(λ, k),

(a) PDF:

f(x) =
k

λ

(x
λ

)k−1

e−( x
λ )k

x ≥ 0, λ > 0 is scale parameter, k > 0 is shape parameter

(b) CDF: f(x) = (1− e−( x
λ )k) · I[0,∞)(x)

(c) MGF: MX(t) =
∞∑

n=0

tnλn

n! Γ(1 + n
k ), k ≥ 1

(d) Mean and Variance:

E[X] = λΓ(1 +
1

k
), V ar(X) = λ2

[
Γ(1 +

2

k
)−

(
Γ(1 +

1

k
)

)2
]

Figure 2.13: Weibull PDF (left) CDF (right)

2. Random sample X1, ..., Xn ∼ Weibull(λ, k) where λ is target parameter: exponential family? su�cient
statistic? minimal su�cient statistic? complete statistic? Fisher information? UMVUE?

k unknown

Not exponential family for λ, k unknown

log f(x) = log( kλ ) + (k − 1) log(xλ )− (xλ )
k

If k known

(a) Exponential family form: f(x) = k
λk (x)

k−1
e−( 1

λ∗x)k

(b) Scale family: The standard distribution is Exp(1) and Xi

β ∼ Exp(1)

(c) Minimal su�cient and complete statistic:
∑n

i=1 X
k
i

(d) Fisher information: nk2

λ2
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3. Related Distributions

Figure 2.14: Weibull and related distributions

� If X ∼ Weibull(λ, 1
2 ) then

√
X ∼ EXP( 1√

λ
)
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2.8 Dirichlet**

In probability and statistics, the Dirichlet distribution (after Peter Gustav Lejeune Dirichlet), often denoted
Dir(α), is a family of continuous multivariate probability distributions parameterized by a vector α of
positive reals. It is a multivariate generalization of the beta distribution, hence its alternative name of
multivariate beta distribution (MBD). Dirichlet distributions are commonly used as prior distributions in
Bayesian statistics, and in fact, the Dirichlet distribution is the conjugate prior of the categorical distribution
and multinomial distribution.

1. PDF, MGF, mean and variance of (X1, ..., XK) ∼ Dir(α1, ..., αk)

(a) PDF:

1

B(α)

K∏
i=1

xαi−1
i

K∑
i=1

xi = 1

B(α) =

K∏
i=1

Γ(αi)

Γ(α0)
where α0 =

K∑
i=1

αi

(b) Mean and Variance:

E[Xi] =
αi

α0
, V ar(Xi) =

α̃i(1−α̃i)
α0+1 where α̃i =

αi

α0

(a) Covariance:
−αiαj

α0(α0+1) for i ̸= j

2. Conjugate prior exists but not going to be useful here

3. Related Distributions

(a) For K independent r.v.s Y1 ∼ Gamma(α1, β),..., YK ∼ Gamma(αK , β), we have V =
K∑
i=1

Yi ∼

Gamma(α0, β), X = (X1, ..., Xk) =
(
Y1

V , ..., YK

V

)
∼ Dir(α1, ..., αK)

4. Example problems and key steps

5. Other notes

(b) Multivariate generalization of Beta distribution
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2.9 Inverse Gaussian*****

The inverse Gaussian distribution has several properties analogous to a Gaussian distribution. The name
can be misleading: it is an "inverse" only in that, while the Gaussian describes a Brownian motion's level
at a �xed time, the inverse Gaussian describes the distribution of the time a Brownian motion with positive
drift takes to reach a �xed positive level.

Its cumulant generating function (logarithm of the characteristic function) is the inverse of the cumulant
generating function of a Gaussian random variable.

1. PDF, MGF, mean and variance of X ∼ IG(µ, λ)

(a) PDF:

f(x) =

√
λ

2πx3
exp

[
−λ(x− µ)2

2µ2x

]
0 < x < ∞

µ > 0

λ > 0

(b) MGF: MX(t) = exp

[
λ
µ

(
1−

√
1− 2µ2t

λ

)]
(c) Mean and Variance:

E[X] = µ, V ar(X) =
µ3

λ

Figure 2.15: Inverse Gaussian PDF (left) CDF (right)

2. Sum and Scaling

(a) If Xi ∼ IG(µ0wi, λ0w
2
i ) then S =

n∑
i=1

Xi ∼ IG(µ0

n∑
i=1

wi, λ0(
n∑

i=1

wi)
2), under condition that

Var(Xi)
E(Xi)

=
µ2
0w

2
i

λ0w2
i
=

µ2
0

λ0
is constant for all i

(b) If X ∼ IG(µ, λ), tX ∼ IG(tµ, tλ) for t > 0

3. Population X1,...,Xn
i.i.d∼ IG(µ, λ)

(a) Exponential family form: f(x) = exp
[
− λ

2µ2x+ λ
µ − λ

2x + 1
2 log λ+ 1

2 log 2πx
3
]

(b) Minimal su�cient and complete statistic:

(
n∑

i=1

Xi,
n∑

i=1

1
Xi

)

30



Distributions

(c) Fisher information: In(µ, λ) =
(

nλ
µ3 ,

n
2λ2

)
(d) MLE µ̂ = X̄, λ̂ =

n
n∑

i=1

(
1
Xi

− 1
X̄

)
4. Related Distributions

(e) Pivot: If X ∼ IG(µ, λ), then
λ(X − µ)2

µ2X
∼ χ2

1

(f) If Xi ∼ IG(µ, λ) then
n∑

i=1

Xi ∼ IG(nµ, n2λ)

(g) If Xi ∼ IG(µ, λ) then X̄ ∼ IG(µ, nλ)

(h) If Xi ∼ IG(µi, 2µ
2
i ) then

n∑
i=1

Xi ∼ IG

(
n∑

i=1

µi, 2

(
n∑

i=1

µi

)2
)
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2.10 Cauchy*

Cauchy is the distribution of the ratio of two independent normally distributed random variables with mean
zero.

The Cauchy distribution is often used in statistics as the canonical example of a "pathological" distribu-
tion since both its expected value and its variance are unde�ned (but see � Moments below). The Cauchy
distribution does not have �nite moments of order greater than or equal to one; only fractional absolute
moments exist.[1] The Cauchy distribution has no moment generating function.

1. PDF, MGF, mean and variance of X ∼ Cauchy(x0, γ); x0 location parameter, γ scale parameter

(a) PDF:

f(x) =
1

πγ

[
1 +

(
x−x0

γ

)2]
−∞ < x < ∞

−∞ < x0 < ∞

γ > 0

(b) CDF: F (x) = 1
π arctan

(
x−x0

γ

)
+ 1

2

(c) MGF: Does not exist

(d) Mean and Variance:
E[X] = unde�ned, V ar(X) = unde�ned

Figure 2.16: Cauchy PDF (left) CDF (right)

2. Linearity and additivity

(a) If X ∼ Cauchy(x0, γ), then kX + ℓ ∼ Cauchy(x0k + ℓ, γ|k|)
(b) If X ∼ Cauchy(x0, γ0) and Y ∼ Cauchy(x1, γ1) are independent, then X + Y ∼ Cauchy(x0 +

x1, γ0 + γ1) and X − Y ∼ Cauchy(x0 − x1, γ0 + γ1)

(c) If X ∼ Cauchy(0, γ), then 1
X ∼ Cauchy(0, 1

γ )

(d) If X1, ..., Xn
i.i.d.∼ Cauchy(0, 1) standard Cauchy distributed, then the sample mean 1

n

∑n
i=1 Xi =

X̄ ∼ Cauchy(0, 1) is also standard Cauchy.

3. Population X1, ..., Xn ∼ Cauchy(x0, γ) (µ is unknown and σ2
0 is known)*****
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4. Related Distributions

Figure 2.17: Cauchy related distributions

(e) If X1 ∼ N(0, 1) and X2 ∼ N(0, 1) are independent then X1

X2
∼ Cauchy(0, 1)

(f) Cauchy(0, 1) ∼ t(df = 1) Student's t distribution

(g) Cauchy(µ, σ) ∼ t(df=1)(µ, σ)

(h) If X ∼ Unif(0, 1) then tan(π(X − 1
2 )) ∼ Cauchy(0, 1)

(i) If X ∼ Cauchy(x0, γ), then
1
X ∼ Cauchy( x0

x2
0+γ2 ,

γ
x2
0+γ2 )

5. Example problems and key steps
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2.11 Laplace (Double Exponential)

In probability theory and statistics, the Laplace distribution is a continuous probability distribution named
after Pierre-Simon Laplace. It is also sometimes called the double exponential distribution, because it can be
thought of as two exponential distributions (with an additional location parameter) spliced together along
the abscissa, although the term is also sometimes used to refer to the Gumbel distribution. The di�erence
between two independent identically distributed exponential random variables is governed by a Laplace
distribution, as is a Brownian motion evaluated at an exponentially distributed random time.

1. PDF, CDF, MGF, mean and variance of X ∼ Laplace(µ, b); µ is location parameter, b is scale
parameter.

(a) PDF:

f(x) =
1

2b
exp

(
−|x− µ|

b

)
−∞ < x < ∞, −∞ < µ < ∞ , b > 0

(b) CDF: f(x) =


1
2 exp

(
x− µ

b

)
x ≤ µ

1− 1
2 exp

(
−x− µ

b

)
x > µ

(c) MGF: MX(t) = exp(µt)
1−b2t2 , |t| <

1
b

(d) Mean and Variance:
E[X] = µ, V ar(X) = 2b2

Figure 2.18: Laplace PDF (left) CDF (right)

2. Random sample X1, ..., Xn ∼ Laplace(µ, b) where µ, b is target parameter: exponential family? su�-
cient statistic? minimal su�cient statistic? complete statistic? Fisher information? UMVUE?

(a) Not exponential if b or µ unknown. If µ known exponential family form: f(x) =

1
2b exp

(
− 1

b

n∑
i=1

|x− µ|
)

(b) Location-Scale family: The standard distribution is Laplace(0, 1) and X−µ
b ∼ Laplace(0, 1)

(c) Minimal su�cient and complete statistic:
∑n

i=1 |Xi − µ|
(d) Fisher information: for b = 1 In(µ) = n, for µ = 0 In(b) =

n
b2

3. Related Distributions
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Figure 2.19: Laplace and related distributions

� If X ∼ Laplace(µ, b) then kX + c ∼ Laplace(kµ+ c, |k|b)
� If X ∼ Laplace(0, 1) then bX ∼ Laplace(0, b)

� If X ∼ Laplace(0, b) then |X| ∼ EXP(b−1)

� If X ∼ Laplace(µ, b) then |X − µ| ∼ EXP(b−1)

� If X,Y ∼ EXP(λ), then X − Y ∼ Laplace(0, λ−1)

� If X1, .., X4 ∼ N(0, 1) then X1X2 − X3X4 ∼ Laplace(0, 1), and (X2
1 − X2

2 + X2
3 − X2

4 )/2 ∼
Laplace(0, 1)

� Pivot: If Xi ∼ Laplace(µ, b) then 2
b

∑n
i=1 |Xi − µ| ∼ χ2

2n*

� Pivot: If X,Y ∼ Laplace(µ, b) then |X−µ|
|Y−µ| ∼ F2,2

� If X,Y ∼ Unif(0, 1) then log(XY ) ∼ Laplace(0, 1)

� If X ∼ EXP(λ) and Y ∼ Bernoulli( 12 ) are independent, then X(2Y − 1) ∼ Laplace(0, λ−1)

� If X ∼ EXP(λ) and Y ∼ EXP(ν) are independent, then λX − νY ∼ Laplace(0, 1)
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2.12 F Distribution

In probability theory and statistics, the F-distribution or F-ratio, also known as Snedecor's F distribution or
the Fisher�Snedecor distribution (after Ronald Fisher and George W. Snedecor), is a continuous probability
distribution that arises frequently as the null distribution of a test statistic, most notably in the analysis of
variance (ANOVA) and other F-tests.

1. PDF, CDF, MGF, mean and variance of X ∼ Fd1,d2

(a) PDF:

f(x) =

√
(d1x)

d1dd2
2

(d1x+ d2)d1+d2

xB
(
d1

2 , d2

2

)
−∞ < x < ∞

(b) CDF: f(x) = I d1x
d1x+d2

(
d1

2 , d2

2

)
(c) MGF: DNE

(d) Mean and Variance:

E[X] = d2

d2−2 for d2 > 2, V ar(X) =
2d2

2(d1+d2−2)
d1(d2−2)2(d2−4) for d2 > 4

Figure 2.20: F PDF (left) CDF (right)

2. Related Distributions

Figure 2.21: F and related distributions
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� If X ∼ χ2
d1

and Y ∼ χ2
d2

are independent, then
X/d1
Y/d2

∼ Fd1,d2

� If Xk ∼ Γ(αk, βk) are independent, then
α2β1X1

α1β2X2
∼ F2α1,2α2

� If X ∼ Beta(d1

2 , d2

2 ) then
d2X

d1(1−X)
∼ F

� Equivalently, if X ∼ Fd1,d2
then

d1X/d2
1 + d1X/d2

∼ Beta(d1

2 , d2

2 )

� If X ∼ Fd1,d2 then Y = lim
d2→∞

d1X ∼ χ2
d1

� If X ∼ Fd1,d2
then X−1 ∼ Fd2,d1

� If X ∼ tn then X2 ∼ F1,n, X
−2 ∼ Fn,1

� If X,Y ∼ Laplace(µ, b) then |X−µ|
|Y−µ| ∼ F2,2
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2.13 Student's t Distribution

In probability and statistics, Student's t-distribution (or simply the t-distribution) tν is a continuous proba-
bility distribution that generalizes the standard normal distribution. Like the latter, it is symmetric around
zero and bell-shaped.

However, tν has heavier tails and the amount of probability mass in the tails is controlled by the parameter
ν . For ν = 1 the Student's t distribution tν becomes the standard Cauchy distribution, whereas for ν → ∞
it becomes the standard normal distribution N(0, 1).

The Student's t-distribution plays a role in a number of widely used statistical analyses, including Stu-
dent's t-test for assessing the statistical signi�cance of the di�erence between two sample means, the con-
struction of con�dence intervals for the di�erence between two population means, and in linear regression
analysis.

1. PDF, CDF, MGF, mean and variance of X ∼ tν

(a) PDF:

f(x) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) (1 + x2

ν

)− ν+1
2

−∞ < x < ∞

(b) MGF: Unde�ned

(c) Mean and Variance:

E[X] = 0 for ν > 1 otherwise unde�ned, V ar(X) = ν
ν−2 for ν > 2, ∞ for 1 < ν ≤ 2

Figure 2.22: Student's t PDF (left) CDF (right)

2. Related Distributions
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Figure 2.23: t and related distributions

� Pivot: If X1, ..., Xn
i.i.d.∼ N(µ, σ2) with sample mean X̄ =

n∑
i=1

Xi

n
and sample variance S2 =

1
n−1

n∑
i=1

(Xi − X̄)2 then T = X̄−µ√
s2/n

∼ tn−1

� Pivot: If Z ∼ N(0, 1) and U ∼ χ2
r are independent, then T =

Z√
U/r

∼ tr
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2.14 χ2
n Distribution

Let us say that X is distributed χ2
n. We know the following: A χ2

n is the sum of the squares of n independent
standard Normal r.v.s.

1. PDF, CDF, MGF, mean and variance of X ∼ tν

(a) PDF:

f(x) =
1

2
k
2 Γ
(
k
2

)x k
2−1e−

x
2

0 ≤ x < ∞

(b) MGF: (1− 2t)−
k
2 for t < 1

2

(c) Mean and Variance:

E[X] = k, V ar(X) = 2k

Figure 2.24: χ2
n PDF (left) CDF (right)

2. Related Distributions

Figure 2.25: χ2
n and related distributions

� If Z1, ..., Zn
i.i.d.∼ N(0, 1) then Z2

i ∼ χ2
1 and Q =

n∑
i=1

Z2
i ∼ χ2

n

� If X ∼ χ2
k then as k → ∞, (X−k)√

2k

d→ N(0, 1) (CLT)

� If X ∼ Gamma(α, β), for α = n
2 , β = 2, X ∼ χ2

n
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� If X ∼ EXP (θ),
n∑

i=1

Xi ∼ Gamma(n, θ) and T =
2

n∑
i=1

Xi

θ ∼ χ2
2n

� If X ∼ Fd1,d2
then Y = lim

d2→∞
d1X ∼ χ2

d1

� If X ∼ χ2
k and c > 0 then cX ∼ Gamma(k2 , 2c)

� If X ∼ χ2
2 then X ∼ EXP( 12 )

� If X ∼ χ2
ν1

and Y ∼ χ2
ν2

are independent, then X
X+Y ∼ Beta(ν1

2 , ν2

2 )

� If X ∼ Unif(0.1) then −2 log(X) ∼ χ2
2

� If Xi ∼ Laplace(µ, b) then 2
b

∑n
i=1 |Xi − µ| ∼ χ2

2n
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2.15 Irwin-Hall

A random variable with Irwin-Hall distribution is de�ned as the sum of a number of independent random
variables, each having a uniform distribution. For this reason it is also known as the uniform sum distribution.

So, if Ui ∼ Unif(0, 1) and U1, ..., Un are i.i.d. then X =
n∑

i=1

Ui ∼ IrwinHall(n)

1. PDF, CDF, MGF, mean and variance of X ∼ IrwinHall(n)

(a) PDF:

f(x) =
1

(n− 1)!

⌊x⌋∑
k=1

(−1)k
(
n

k

)
(x− k)n−1

+

where (x− k)+ =

{
x− k x− k ≥ 0

0 x− k < 0

0 ≤ x ≤ n

n ∈ N

(b) CDF: F (x) = 1
n!

⌊x⌋∑
k=1

(−1)k
(
n
k

)
(x− k)n+

(c) MGF: MX(t) =
(

et−1
t

)n
(d) Mean and Variance:

E[X] =
n

2
, V ar(X) =

n

12

2. Example problems and key steps
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