ADAM, SARAH

Variance Reduction

Alex Salce SIE 596 | 04/18/2024

Introduction

In general, we are solving an optimization problem of the form...

We have covered techniques to reduce variance of the randomized gradient steps in a minibatch or stochastic gradient descent algorithm, but can we improve upon these (SVRG, SAG/SAGA, etc)?

ADAM (orig. 2015)

[7] D. P. KINGMA AND J. BA, Adam: A method for stochastic optimization, 2017.

SARAH (2017)

[8] L. M. NGUYEN, J. LIU, K. SCHEINBERG, AND M. TAKÁČ, Sarah: A novel method for machine learning problems using stochastic recursive gradient, 2017.

Each has a unique approach to address variance reduction. Both utilize recursive gradient information.

 $\min_{x \in \mathbb{R}^d} \left\{ P(x) = \frac{1}{n} \sum_{i=1}^n f_i(x) \right\}$

ADAM ADAptive Moment estimation

Variant of minibatch GD, Momentum, RMSProp

SARAH StochAstic Recursive grAdient algoritHm Variant of SVRG

Why is it important?

We are highly motivated to improve gradient descent optimization methods. Why? Computational efficiency when optimizing model parameters for large datasets.

ADAM is a popular optimizer

→ Very popular in training of neural networks (nonconvex objectives), NLP tasks, GANs, Reinforcement Learning

SARAH offers improved convergence over SVRG

→ Can replace GD methods in practice for convex optimization like we have seen in this course

Applications for convex and nonconvex objectives (though we will only focus upon convex)

Assumptions (for reference)

• **[CONVEX]** f_i is convex

 $f_i(y) \ge f_i(x) + \nabla f_i(x)^T (y - x)$

• **[SCONVEX]** Each f_i is μ -strongly convex, $\exists \mu > 0 \ s. t$. $f_i(y) \ge f_i(x) + \nabla f_i(x)^T (y - x) + \frac{\mu}{2} ||y - x||^2, \forall x, y \in \mathbb{R}$

⇒ Note, a function is mu-strongly convex if $\lambda_{min} (\nabla^2 f(x)) \ge \mu, \mu > 0 \ \forall x \in \mathbb{R}^d$, where $\lambda_{min}(*)$ operator returns the smallest eigenvalue of *.So, μ should be less than or equal to the smallest eigenvalue of the Hessian of the objective function.

Assumptions (for reference)

• **[LSMOOTH]** Each f_i is convex, *L*-smooth (Lipschitz continuous gradient), $\exists L > 0 \ s.t.$ $|f_i(x) - f_i(y)| \le L ||x - y||, \forall x, y \in \mathbb{R}$

• **[LOL1S]** (L_0, L_1) smoothness

Assumption 1 ((L_0, L_1) Smoothness). All of $\{f_i\}_{i=0}^{n-1}$ satisfy (L_0, L_1) smoothness, i.e., there exist positive constants (L_0, L_1), such that, $\forall w_1, w_2 \in \mathbb{R}^d$ satisfying $||w_1 - w_2|| \leq \frac{1}{L_1}$,

$$\|\nabla f_i(\boldsymbol{w}_1) - \nabla f_i(\boldsymbol{w}_2)\| \le (L_0 + L_1 \|\nabla f_i(\boldsymbol{w}_1)\|) \|\boldsymbol{w}_1 - \boldsymbol{w}_2\|,\tag{3}$$

and $f_i(w)$ is lower bounded, $\forall i \in [0, n-1]$.

Eq. (3) generalizes the classical bounded smoothness condition (i.e., $L_1 = 0$ in Assumption 3), and allows for a wide range of simple and important functions such as the polynomials and even the exponential functions. Moreover, empirical observation [36, 34] suggests that Eq. (3) is a preciser characterization of the loss landscape of neural networks than the classical bounded smoothness condition in tasks where Adam outperforms SGD.

[9] B. WANG, Y. ZHANG, H. ZHANG, Q. MENG, Z.-M. MA, T.-Y. LIU, AND W. CHEN, *Provable adaptivity in adam*, 2022.

ADAM - Summary

- Combines Momentum and RMSProp techniques for accelerating/reducing variance
- Constant learning rate hyperparameters, but adaptive steps (bias corrected)
- Recursive batch gradient information
- No gradient table
- Converges $O\left(\frac{1}{\sqrt{T}}\right)$ for T iterations

Algorithm 1 ADAM
0) Require: stochastic objective function $f_i(w)$
1) Require: learning rate η , exponential decay rates $\beta_1, \beta_2 \in [0, 1)$, tolerance ϵ
2) Initialize: initial parameter vector w_0 , initial 1^{st} moment vector $m_0 \leftarrow 0$, initial 2^{nd} moment
vector $v_0 \leftarrow 0$, initial timestep $t \leftarrow 0$
3) while w_t is not converged do
$t \leftarrow t + 1$
$g_t \leftarrow \nabla_w f_t(w_{t-1})$ (batch gradient at iteration t)
$m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (udpate basied first moment estimate)
$v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 \; (udpate \; baised \; second \; raw \; moment \; estimate)$
$\hat{m}_t \leftarrow m_t/(1-\beta_1^t)$ (bias-corrected first moment estimate)
$\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$ (bias-corrected second raw moment estimate)
$w_t \leftarrow w_{t-1} - \eta \cdot \hat{m}_t / (\sqrt{\hat{v}_t} + \epsilon) (update \ parameters)$
end while
$\mathbf{return} \ w_t$

ADAM Algorithm

Initialization

- Objective function $f \in \mathbb{R}^{n \times 1}$
- Constant learning rate η
- Exponential decay rates β_1 , β_2
- Epsilon ε
- Vectors $w_0 \in \mathbb{R}^{1 \times m}$, $m_0 \in \mathbb{R}^{1 \times m}$, $v_0 \in \mathbb{R}^{1 \times m}$ Loop:
- Stochastic (batch) Gradient step
- Gradient 1st moment estimate (mean of past grads), moving average param & bias correction
- Gradient 2nd moment estimate (ssqares of past grads), moving average param & bias correction
- Parameter update

Algorithm 1 ADAM

- (0) **Require:** stochastic objective function $f_i(w)$
- (1) **Require:** learning rate η , exponential decay rates $\beta_1, \beta_2 \in [0, 1)$, tolerance ϵ
- (2) **Initialize:** initial parameter vector w_0 , initial 1^{st} moment vector $m_0 \leftarrow 0$, initial 2^{nd} moment vector $v_0 \leftarrow 0$, initial timestep $t \leftarrow 0$
- (3) while w_t is not converged do
 - $t \leftarrow t+1$
 - $g_t \leftarrow \nabla_w f_t(w_{t-1})$ (batch gradient at iteration t)
 - $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 \beta_1) \cdot g_t$ (udpate based first moment estimate)
 - $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 \beta_2) \cdot g_t^2 \ (udpate \ baised \ second \ raw \ moment \ estimate)$
 - $\hat{m}_t \leftarrow m_t/(1-\beta_1^t)$ (bias-corrected first moment estimate)
 - $\begin{array}{c} \hat{v}_t \leftarrow v_t / (1 \beta_2^t) \quad (bias\text{-corrected second raw moment estimate}) \\ w_t \leftarrow w_{t-1} \eta \cdot \hat{m}_t / (\sqrt{\hat{v}_t} + \epsilon) \quad (update \ parameters) \end{array}$

end while

return w_t

Typical choice: $\eta = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\varepsilon = 1e - 8$

ADAM Algorithm – Momentum

- *m_t* exponential moving average based on previous aggregate batch gradient information
- This step is analogous to Momentum (same general idea as <u>Acceleration</u>)
- Estimate is biased toward initialization (zero), so an additional bias-correction step is employed

(0) Require: stochastic objective function $f_i(w)$
(1) Require: learning rate η , exponential decay rates $\beta_1, \beta_2 \in [0, 1)$, tolerance ϵ
(2) Initialize: initial parameter vector w_0 , initial 1^{st} moment vector $m_0 \leftarrow 0$, initial 2^{nd} mom
vector $v_0 \leftarrow 0$, initial timestep $t \leftarrow 0$
(3) while w_t is not converged do
$t \leftarrow t + 1$
$g_t \leftarrow \nabla_w f_t(w_{t-1})$ (batch gradient at iteration t)
$m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (udpate basied first moment estimate)
$v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 \; (udpate \; baised \; second \; raw \; moment \; estimate)$
$\hat{m}_t \leftarrow m_t/(1-\beta_1^t)$ (bias-corrected first moment estimate)
$\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$ (bias-corrected second raw moment estimate)
$w_t \leftarrow w_{t-1} - \eta \cdot \hat{m}_t / (\sqrt{\hat{v}_t} + \epsilon) (update \ parameters)$
end while
return w_t

ADAM Algorithm – RMSProp

- *v_t* exponential moving average of sum of squares of past gradients
- This step is **RMSProp**
- Estimate is biased toward initialization (zero), so an additional bias-correction step is employed

Algorithm 1 ADAM
(0) Require: stochastic objective function $f_i(w)$
(1) Require: learning rate η , exponential decay rates $\beta_1, \beta_2 \in [0, 1)$, tolerance ϵ
(2) Initialize: initial parameter vector w_0 , initial 1^{st} moment vector $m_0 \leftarrow 0$, initial 2^{nd} moment
vector $v_0 \leftarrow 0$, initial timestep $t \leftarrow 0$
(3) while w_t is not converged do
$t \leftarrow t + 1$
$g_t \leftarrow \nabla_w f_t(w_{t-1})$ (batch gradient at iteration t)
$m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (udpate based first moment estimate)
$v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 \ (udpate \ baised \ second \ raw \ moment \ estimate)$
$\hat{m}_t \leftarrow m_t/(1-\beta_1^t)$ (bias-corrected first moment estimate)
$\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$ (bias-corrected second raw moment estimate)
$w_t \leftarrow w_{t-1} - \eta \cdot \hat{m}_t / (\sqrt{\hat{v}_t} + \epsilon) (update \ parameters)$
end while
$\mathbf{return} \ w_t$

ADAM Algorithm – ADAM update

- **Parameter update** like descent, subtracting learning rate η times bias-corrected Momentum \widehat{m}_t combined with bias-corrected RMSProp $1/(\sqrt{\widehat{v}_t} + \varepsilon)$.
- Variance reduction -> RMSProp

Algorithm 1 ADAM
0) Require: stochastic objective function $f_i(w)$
1) Require: learning rate η , exponential decay rates $\beta_1, \beta_2 \in [0, 1)$, tolerance ϵ
2) Initialize: initial parameter vector w_0 , initial 1^{st} moment vector $m_0 \leftarrow 0$, initial 2^{nd} moment
vector $v_0 \leftarrow 0$, initial timestep $t \leftarrow 0$
3) while w_t is not converged do
$t \leftarrow t + 1$
$g_t \leftarrow \nabla_w f_t(w_{t-1})$ (batch gradient at iteration t)
$m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (udpate baised first moment estimate)
$v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 \ (udpate \ baised \ second \ raw \ moment \ estimate)$
$\hat{m}_t \leftarrow m_t/(1-\beta_1^t)$ (bias-corrected first moment estimate)
$\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$ (bias-corrected second raw moment estimate)
$w_t \leftarrow w_{t-1} - \eta \cdot \hat{m}_t / (\sqrt{\hat{v}_t} + \epsilon) \qquad (update \ parameters)$
end while
$\mathbf{return} \ w_t$

 $\frac{m_t}{\sqrt{\tilde{v}_t}}$ - Signal to Noise Ratio (SNR)

ADAM

Momentum uses average past gradient information to reduce variance, RMSProp adaptively scales learning rate by magnitude of current and average of past gradients

https://wiki.cloudfactory.com/docs/mp-wiki/solvers-optimizers/rmsprop

ADAM Convergence Summary

For [CONVEX] and [LOL1S] objective

Under basic convexity assumptions for the objective,

ADAM is guaranteed convergence at rate $O(\frac{1}{\sqrt{T}})$

NOTE: There are known flaws in the original proof of Kingma and Ba that are addressed with (L_0, L_1) smoothness condition

 \Rightarrow

[9] B. WANG, Y. ZHANG, H. ZHANG, Q. MENG, Z.-M. MA, T.-Y. LIU, AND W. CHEN, Provable adaptivity in adam, 2022.

$$R(T) = \sum_{t=1}^{T} [f_t(\theta_t) - f_t(\theta^*)]$$

Theorem 4.1. Assume that the function
$$f_t$$
 has bounded gradients, $\|\nabla f_t(\theta)\|_2 \le G$, $\|\nabla f_t(\theta)\|_{\infty} \le G_{\infty}$ for all $\theta \in \mathbb{R}^d$ and distance between any θ_t generated by Adam is bounded, $\|\theta_n - \theta_m\|_2 \le D$, $\|\theta_m - \theta_n\|_{\infty} \le D_{\infty}$ for any $m, n \in \{1, ..., T\}$, and $\beta_1, \beta_2 \in [0, 1)$ satisfy $\frac{\beta_1^2}{\sqrt{\beta_2}} < 1$. Let $\alpha_t = \frac{\alpha}{\sqrt{t}}$ and $\beta_{1,t} = \beta_1 \lambda^{t-1}, \lambda \in (0, 1)$. Adam achieves the following guarantee, for all $T \ge 1$.
 $R(T) \le \frac{D^2}{2\alpha(1-\beta_1)} \sum_{i=1}^d \sqrt{T\widehat{v}_{T,i}} + \frac{\alpha(1+\beta_1)G_{\infty}}{(1-\beta_1)\sqrt{1-\beta_2}(1-\gamma)^2} \sum_{i=1}^d \|g_{1:T,i}\|_2 + \sum_{i=1}^d \frac{D_{\infty}^2 G_{\infty}\sqrt{1-\beta_2}}{2\alpha(1-\beta_1)(1-\lambda)^2}$

Corollary 4.2. Assume that the function f_t has bounded gradients, $\|\nabla f_t(\theta)\|_2 \leq G$, $\|\nabla f_t(\theta)\|_{\infty} \leq G_{\infty}$ for all $\theta \in \mathbb{R}^d$ and distance between any θ_t generated by Adam is bounded, $\|\theta_n - \theta_m\|_2 \leq D$, $\|\theta_m - \theta_n\|_{\infty} \leq D_{\infty}$ for any $m, n \in \{1, ..., T\}$. Adam achieves the following guarantee, for all $T \geq 1$. $\frac{R(T)}{T} = O(\frac{1}{\sqrt{\pi}})$

SARAH - Summary

- Very similar to SVRG (same hyperparameter choices)
- Modifies inner loop, uses recursive gradient info rather than only outer loop gradient
 - Biased inner loop computations, but total expectation is unbiased
- Constant learning rate
- No gradient table
- Similar performance to SVRG, some advantages in strong convex cases

Algorithm 1 SARAH Parameters: the learning rate $\eta > 0$ and the inner loop size m. Initialize: \tilde{w}_0 Iterate: for s = 1, 2, ... do $w_0 = \tilde{w}_{s-1}$ $v_0 = \frac{1}{n} \sum_{i=1}^n \nabla f_i(w_0)$ $w_1 = w_0 - \eta v_0$ Iterate: for t = 1, ..., m - 1 do Sample i_t uniformly at random from [n] $v_t = \nabla f_{i_t}(w_t) - \nabla f_{i_t}(w_{t-1}) + v_{t-1}$ $w_{t+1} = w_t - \eta v_t$ end for Set $\tilde{w}_s = w_t$ with t chosen uniformly at random from $\{0, 1, \ldots, m\}$ end for

SARAH Algorithm

Italics are same steps as SVRG

Initialization

- Constant learning rate η
- Objective function
- Inner loop steps m
- Initial parameters \widetilde{w}_0

Outer Loop

- Full gradient descent update ("snapshot point") Inner Loop (Variance Reduction)
- Recursive Stochastic Gradient (<u>one</u> sample) estimate step ("SARAH" update)
- Parameter update

Stochastic Re-initialization

• Initialize random weight for outer loop \widetilde{w}_{s-1}

SARAH

$$\frac{def}{def} = \frac{1}{\mu\eta(m+1)} + \frac{\eta L}{2 - \eta L} < 1.$$
SVRG

$$\frac{1}{1 - 2L\eta m} + \frac{2\eta L}{1 - 2\eta L} < 1.$$

 σ_m

 $\alpha_m = \frac{1}{\mu \eta}$

Algorithm 1 SARAH

Parameters: the learning rate $\eta > 0$ and the inner loop size m. Initialize: \tilde{w}_0 Iterate: for s = 1, 2, ... do $w_0 = \tilde{w}_{s-1}$ $v_0 = \frac{1}{n} \sum_{i=1}^n \nabla f_i(w_0)$ $w_1 = w_0 - \eta v_0$ Outer Loop Iterate: for t = 1, ..., m - 1 do Sample i_t uniformly at random from [n]linner Joop $v_t = \nabla f_{i_t}(w_t) - \nabla f_{i_t}(w_{t-1}) + v_{t-1}$ $w_{t+1} = w_t - \eta v_t$ end for Set $\tilde{w}_s = w_t$ with t chosen uniformly at random from $\{0, 1, \ldots, m\}$ end for

SARAH Algorithm

Variance Reduction

The SARAH Algorithm first calculates a full gradient in the outer loop (like SVRG), then uses recursive stochastic gradient information v_t at each iteration of the inner loop, rather than stochastic updates relative to outer loop full gradient calculation.

The key step of the algorithm is a recursive update of the stochastic gradient estimate (*SARAH update*)

$$v_t = \nabla f_{i_t}(w_t) - \nabla f_{i_t}(w_{t-1}) + v_{t-1}, \qquad (2)$$

followed by the iterate update:

$$w_{t+1} = w_t - \eta v_t. \tag{3}$$

For comparison, SVRG update can be written in a similar way as

$$v_t = \nabla f_{i_t}(w_t) - \nabla f_{i_t}(w_0) + v_0.$$
 (4)

SARAH Algorithm

Bias

For SVRG, v_t is an unbiased estimator for the gradient, $E_{it}[v_t] = \nabla P(\widetilde{w}_t)$ * Expectation of inner loop iterate is not equal to the full gradient "snapshot", but the total expectation of the full loop is.

 $E_{it}[v_t] \neq \nabla P(\widetilde{w}_t) *$ $E[v_t] = \nabla P(\widetilde{w}_t)$

The key step of the algorithm is a recursive update of the stochastic gradient estimate (*SARAH update*)

$$v_t = \nabla f_{i_t}(w_t) - \nabla f_{i_t}(w_{t-1}) + v_{t-1}, \qquad (2)$$

followed by the iterate update:

$$w_{t+1} = w_t - \eta v_t. \tag{3}$$

For comparison, SVRG update can be written in a similar way as

$$v_t = \nabla f_{i_t}(w_t) - \nabla f_{i_t}(w_0) + v_0.$$
 (4)

SARAH Convergence Summary

For [CONVEX], [LSMOOTH] objective

For functions satisfying [CONVEX] and [LSMOOTH], we can guarantee convergence $O(\left(n + \frac{1}{\epsilon}\right) log(\frac{1}{\epsilon}))$

$\mathbb{E}[\|\nabla P(w_{\mathcal{T}})\|^2] \le \epsilon.$ (7)

SARAH SVRG

 $\sigma_m \stackrel{\text{def}}{=} \frac{1}{\mu \eta (m+1)} + \frac{\eta L}{2 - \eta L} < 1. \qquad \alpha_m = \frac{1}{\mu \eta (1 - 2L\eta)m} + \frac{2\eta L}{1 - 2\eta L} < 1.$

 $\min_{0 < \eta < 1/L} \sigma_m, \qquad \min_{0 < \eta < 1/4L} \alpha_m,$

which can be interpreted as the best convergence rates for different values of m, for both SARAH and SVRG. After

For [CONVEX], [LSMOOTH], [SCONVEX] objective

If our objective has [SCONVEX], SARAH guarantees convergence $O(\left(n + \frac{L}{\mu}\right) log(\frac{1}{\epsilon}))$. Same order as SVRG, but uniformly better due to variance bound

Figure 3: Theoretical comparisons of learning rates (left) and convergence rates (middle and right) with n = 1,000,000 for SVRG and SARAH in one inner loop.

SARAH Convergence Summary

Table 1: Comparisons between different algorithms for strongly convex functions. $\kappa = L/\mu$ is the condition number.

Method	Complexity	Fixed Learning Rate	Low Storage Cost
GD	$\mathcal{O}\left(n\kappa\log\left(1/\epsilon\right)\right)$	1	1
SGD	$\mathcal{O}\left(1/\epsilon ight)$	×	1
SVRG	$\mathcal{O}\left((n+\kappa)\log\left(1/\epsilon\right)\right)$	~	1
SAG/SAGA	$\mathcal{O}\left(\left(n+\kappa\right)\log\left(1/\epsilon\right)\right)$	1	×
SARAH	$\mathcal{O}\left((n+\kappa)\log\left(1/\epsilon\right)\right)$	1	✓

Table 2: Comparisons between different algorithms for convex functions.

Method	Complexity
GD	$\mathcal{O}\left(n/\epsilon ight)$
SGD	$\mathcal{O}\left(1/\epsilon^2 ight)$
SVRG	$\mathcal{O}\left(n + (\sqrt{n}/\epsilon)\right)$
SAGA	$\mathcal{O}\left(n+(n/\epsilon) ight)$
SARAH	$\mathcal{O}\left(\left(n+(1/\epsilon)\right)\log(1/\epsilon)\right)$
SARAH (one outer	$\mathcal{O}\left(n+(1/\epsilon^2)\right)$
loop)	$\mathcal{O}\left(n+(1/\epsilon_{-})\right)$

 [5] L. M. NGUYEN, J. LIU, K. SCHEINBERG, AND M. TAKÁČ, Sarah: A novel method for machine learning problems using stochastic recursive gradient, 2017.

Convergence comparisons

SARAH converges at comparable rates to SVRG/SAG/SAGA for convex functions, but has significant advantages for strong convexity of the objective function.

Computational advantages

Recursive update does not require storage of past information, less computationally expensive that similar methods like SAG/SAGA

SARAH – Nguyen, Liu, Scheinberg, Takac

Variance of inner loops approaches zero as *m* increases for SARAH, does not for SVRG

Conclusions

ADAM

- Used in practice for fast convergence
- Adaptive unlike SGD
 methods, locally smooth
 - Minimizes oscillations near optimal solution
- Batch descent can
 reduce noise

SARAH

- SARAH doesn't seem to be used as widely in practice, but has some nonconvex applications in use/research
- Ongoing research on modifications to algorithm, like random reshuffling, mini-batch, etc.

Comparisons

ADAM – Adaptive learning rate (with bias-correction)

SARAH – SGD constant learning rate (generally a "step in the right direction" from SVRG)

Numerical Experiment – GD, SARAH ADAM

Data

- 500 features
- 10000 samples
- 3170 weight updates per algorithm

SARAH/SVRG - ~3.5s **ADAM** - ~4.5s **GD** - 95s

Norm of least squares loss vs. Iteraions

Extensions/Further Research

For those interested...

ADAM

- → AdaMax: Variant of ADAM that utilizes infinity norm for update in lieu of RMSProp
- → Ada-class algorithms: AdaMax, Adadelta, Nadam (Nesterov momentum)

SARAH

- → SARAH+: Variant of ADAM that utilizes infinity norm for update in lieu of RMSProp
- → Random-Reshuffled SARAH: Does not need full gradient computations [1]

References

- A. BEZNOSIKOV AND M. TAKÁČ, Random-reshuffled sarah does not need full gradient computations, Optimization Letters, 18 (2023), p. 727–749.
- [2] S. BOCK, J. GOPPOLD, AND M. WEISS, An improvement of the convergence proof of the adam-optimizer. 04 2018.
- [3] V. K. CHAUHAN, A. SHARMA, AND K. DAHIYA, Saags: Biased stochastic variance reduction methods for large-scale learning, Applied Intelligence, 49 (2019), p. 3331–3361.
- [4] J. CHEN, R. ZHANG, AND Y. LIU, An adam-enhanced particle swarm optimizer for latent factor analysis, 2023.
- [5] A. DÉFOSSEZ, L. BOTTOU, F. BACH, AND N. USUNIER, A simple convergence proof of adam and adagrad, 2022.
- [6] M. GÜRBÜZBALABAN, A. OZDAGLAR, AND P. A. PARRILO, Why random reshuffling beats stochastic gradient descent, Mathematical Programming, 186 (2019), p. 49–84.
- [7] D. P. KINGMA AND J. BA, Adam: A method for stochastic optimization, 2017.
- [8] L. M. NGUYEN, J. LIU, K. SCHEINBERG, AND M. TAKÁČ, Sarah: A novel method for machine learning problems using stochastic recursive gradient, 2017.
- [9] B. WANG, Y. ZHANG, H. ZHANG, Q. MENG, Z.-M. MA, T.-Y. LIU, AND W. CHEN, *Provable adaptivity in adam*, 2022.

Additional Resources

- Momentum: <u>https://distill.pub/2017/momentum/?ref=blog.paperspace.com</u>
- <u>https://medium.com/analytics-vidhya/a-complete-guide-to-adam-and-rmsprop-optimizer-</u> <u>75f4502d83be</u>
- https://optimization.cbe.cornell.edu/index.php?title=Adam
- <u>https://medium.com/geekculture/a-2021-guide-to-improving-cnns-optimizers-adam-vs-sgd-495848ac6008</u>

SARAH SVRG delta from numerical experiment slide

SARAH+ Algorithm

Initialization

- Constant learning rate*****
- Objective function
- Initial parameters \widetilde{w}_0

Outer Loop

- Full gradient descent update ("snapshot point") Inner Loop (Variance Reduction)
- Recursive Stochastic Gradient (single sample) estimate step ("SARAH" update)
- Parameter update

Stochastic Re-initialization

- Initialize random weight for outer loop \widetilde{w}_{s-1} Break inner loop when $||v_t||$ is small enough
- Specify hyperparameter $\gamma \in (0, 1]$

