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Abstract

We examine two stochastic optimization methods, ADAM and SARAH, that each utilize
variance reduction techniques to improve theoretical convergence over similar methods. The
variance reduction techiques have a bias tradeoff for each algortihm. ADAM combines RM-
SProp and momentum, which are biased methods, but implements a bias correction within the
algorithm. SARAH is a modification of SVRG, but has biased inner loops unlike the unbiased
inner loops of SVRG. Numerical experiments demonstrate variance reduction in both methods,
and the effects of SARAH’s inner loop bias can be seen in an application with a real dataset.

1 Introduction

Stochastic optimizers are a class of algorithms that have become prevalent in recent years in machine
learning applications to process increasingly large datasets. First-order gradient descent algorithms
utilizing stochastic gradients (individual gradient selected uniformly at random), or minibatch gra-
dients (subsets of a full gradient whose elements selected uniformly at random), have consequently
become core staples in marchine learning frameworks due to their advantageous computational ef-
ficiency for applications to datasets of both large sample size and dimensionality. Generally, these
approaches optimize model parameters x ∈ Rd by solving the finite-sum problem.

minx∈Rd

{
P (x) =

1

b

b∑
i=1

fi(x)

}
, Ik ⊂ 1, ..., n, |Ik| = b (1)

1: b = 1 stochastic, n > b > 1 minibatch

A drawback of a stochastic or minibatch approach is the inherent variance in parameter up-
dates due to the random gradient selection in their computations, and subsequent updates over
each timestep. For algorithms utilizing these approaches, controlling variance can be critical to
guaranteeing convergence, which has motivated variance reduction techniques in the development
of new stochastic optimization algorithms.

The subjects of this paper, ADAM and SARAH, are stochastic optimizers that utilize stochas-
tic/minibatch gradients with variance reduction techniques. Although the two algorithms are funda-
mentally different in their approaches, they both utilize recursive accumulated gradient information
for variance reduction.
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1.1 Applications

The ADAM optimizer a popular optimizer in a variety of machine learning frameworks including
deep learning, neural networks, natural language processing, and generative adversarial networks,
to name a few. These applications benefit from ADAM’s strengths against other optimizers; it is
fast, requires little hyperparameter tuning, performs well with sparse gradients, and can be applied
to stochastic objective functions. Further, it has proven convergence for convex objective functions,
as well as demonstrated convergence for nonconvex objectives (He et al., 2023) [5]. The success of
ADAM in practice has motivated variants like AdaMax, which has also become popular in sparse
dataset applications. ADAM, AdaMax, and other ADAM variants are built-in to the TensorFlow
Keras package [1]

SARAH is a direct modification of SVRG, however does not seem to be used as widely in
practice as SVRG. While speculation as to why is not worthwhile, it is noteworthy that SARAH’s
variance reduction technique utilizes a biased methodology, where SVRG is unbiased. Still, there
is a fair amount of research available for futher modifications of SARAH. In practice, SARAH can
be a direct substitute for SVRG with only some updated parameter tuning considerations, so it
can be utilized for a very large variety of applications as a SVRG replacement.

1.2 Literature review

ADAM, “ADAptive Moment estimation”, was initially proposed in the paper Adam: A method
for stochastic optimization (Kingma and Ba, 2017) [6]. This paper was scrutinized for its proofs
of convergence for ADAM and whether ADAM was really advantageous over stochastic gradient
descent (SGD). Further, some examples of ADAM diverging under its stated assumptions have been
identified (Reddi et al., 2019) [8]. Provable Adaptivity In ADAM (Wang et al., 2022) [9] proposed
a “relaxed” smoothness condition that addressed some shortcomings of the original theoretical
anlaysis. Another paper, An improvement of the convergence proof of the ADAM-Optimizer (Bock
et al., 2018) [3] corrected some errors in the original proof. Still, ADAM remains very popular
despite some of the original paper’s theoretical shortcomings.

SARAH, “StochAstic Recursive grAdient algoritHm”, was initially proposed in the paper Sarah:
A novel method for machine learning problems using stochastic recursive gradient by (Nguyen et al.,
2017) [7]. A follow on paper including one of the original authors, Random-reshuffled sarah does not
need full gradient computations (Beznosikov and M. Takáč, 2022) [2] demonstrates that, utilizing
a random reshuffling technique, SARAH can be modified to eliminate full gradient computations
entirely. SARAH-M, (Yang, 2024) [10], explores the incorporation of momentum with the SARAH
algorithm, similar to ADAM. Examples like this, among others, indicate an interest in the algorithm
despite not being a clearly preferred optimizer over SVRG or similar methods.

The subsequent coverage of each algorithm will draw primarily from their respective original
publications. While we will not go into detail about variants of either algorithm, these are references
suggested for further research.
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2 Methodology/Algorithm description

2.1 ADAM (ADAptive Moment estimation), see Algorithm 1 in Appendix

Methodology in this section is drawn from Kingma and Ba’s ADAM: A Method for Stochastic
Optimization (Kingma and Ba, 2017) [6].

The ADAM algorithm combines the concepts of momentum and RMSProp (”Root Mean Squared
Propogation”) using minibatch or stochastic gradient information to iteratively udpate parameters.
The key feature of ADAM is an adaptive learning rate that is modulated by recursive accumulated
gradient information.

In basic terms, the steps that are similar to momentum utilize an exponential weighted average
of previous gradient information to calculate the gradient term at each descent step from previous
gradient averages, having the effect of reducing variance in steps and moving more accurately in
the direction of the optimum. The steps similar to RMSProp have the effect of adaptively scaling
the learning rate based on an exponential weighted average of the magnitude of recent gradients.
Both of these terms are biased toward the initialized weights, and ADAM employs bias-correction
udpates to both the momentum and RMSProp terms.

2.1.1 Bias

The bias-correction step differentiates ADAM from RMSProp (which on its own does not correct
for bias) and can be attributed to its advantageous performance with sparse data. Kingma and Ba
derive the bias term for the second moment estimate vt by setting v0 = 0 and taking the expectation
of the term at time t. Omitting calculation steps, they arrive at the following.

E[vt] = E[g2t ] · (1− βt
2) + ζ

Where ζ is assumed to be small since β2 should be selected to assign very small weights to
gradients far enough in the past. The proof given in the paper also applies to the first moment
estimate. Hence, the first and second moment bias correction terms are incorporated by dividing the
respective estimates by the (1− βt

1,2) term in Algorithm 1, giving E[m̂t] = E[gt] and E[v̂t] = E[g2t ].

2.1.2 Convergence

The convergence proof given by Kingma and Ba imposes the following requirements for f . First, f
is convex, defined by the following.

Definition 1. A function f : Rd → R is convex if for all x, y ∈ Rd, for all λ ∈ (0, 1)

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y)

Additionally, we note that the following property holds for convex functions.

Lemma 1. If a function f : Rd → R is convex, then for all x, y ∈ Rd

f(y) ≥ f(x) +∇f(x)T (y − x)

Omitting details of the proof, Kingma and Ba use Lemma 1 to establish an upper bound on the
regret function R(T ) =

∑T
t=1 ft(xt)− ft(x

∗), where x∗ is the optimal parameters for minimizing f .
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Theorem 1. Assume that the function ft has bounded gradients, ||∇ft(x)||2 ≤ G, ||∇ft(x)||∞ ≤
G∞ for all x ∈ Rd and distance between any xt generated by ADAM is bounded, ||xn − xm||2 ≤ D,

||xn − xm||∞ ≤ D∞ for any m,n ∈ {1, ..., T}, and β1, β2 ∈ [0, 1) satisfy
β2
1√
β2

< 1. Let αt =
α√
t
and

β1,t = β1λ
t−1, λ ∈ (0, 1). ADAM achieves the following guarantee, for all T ≥ 1.

R(T ) ≤ D2

2η(1− β1)

d∑
i=1

√
T v̂T,i +

η(1 + β1)G∞

(1− β1)
√
1− β2(1−

β2
1√
β2
)2

d∑
i=1

||g1:T,i||2 +
d∑

i=1

D2
∞G∞

√
1− β2

2η(1− β1)(1− λ)2

In simple terms, the proximity of ft(xt) to the optimum is bounded by tunable parameters and
constant bounds based on the data. Under the assumptions of ft from Theorem 1, the following
convergence follows.

R(T )

T
= O

(
1√
T

)
O
(

1√
T

)
is the best theoretical convergence of regular SGD, however there has been some

criticism of the theory regarding the advantages of ADAM over SGD despite observed advantages
in emperical performance. In 2022, Provable Adaptivity in ADAM (Wang et al., 2022) [9] proposed
the (L0, L1) smoothness assumption, which slightly relaxes the L-smooth condition for bounding
gradients, and in conjunction with a growth condition bounding sum of square gradients, can prove

the O
(

1√
T

)
convergence of ADAM (details omitted here, see publication for proof).

2.2 SARAH (StochAstic Recursive grAdient algoritHm), see Algorithm 2 in
Appendix

Methodology in this section is drawn from SARAH: A Novel Method for Machine Learning Problems
Using Stochastic Recursive Gradient (Nguyen, Liu, Scheinberg, and Takáč, 2017) [7].

The SARAH algorithm is a stochastic optimizer that converges for convex L-smooth objectives
fi with some theoretical advantages over similar methods like SAG, SAGA, and SVRG. It is most
similar to SVRG, using an identical outer loop step and a modified inner loop that uses recursive
gradient information rather than using only the outer loop gradient at each inner loop iterate.

2.2.1 Bias

Reference Algorithm 2. SARAH and SVRG outer loops are the same, so we start by examining
the inner loop update for SVRG.

vt = ∇fit(wt)−∇fit(w0) + v0

w0 is computed in the outer loop step and is only updated after each full inner loop. The SARAH
update replaces ∇fit(w0) + v0 with a recursive gradient update framework ∇fit(wt−1) + vt−1.

vt = ∇fit(wt)−∇fit(wt−1) + vt−1

As it holds in statistical theory, there is a bias-variance tradeoff with the SARAH update. The
use of recursive gradient information in SARAH actually reduces the variance of the inner loop
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steps to zero as inner loops iterates increase, whereas this is not the case for SVRG. However, while
the inner loops of SVRG are unbaised, individual inner loop iterates for SARAH are biased. The
expectation of the inner loop after t iterations is as follows (we will use P as in Equation 1).

E[vt|Ft] = ∇P (wt)−∇P (wt−1) + vt−1 ̸= ∇P (wt)

where Ft = σ(w0, i1, i2, ..., it−1) is the sigma algebra generated by the sequence of updates from
w0. However, the total expectation holds E[vt] = E[∇P (wt)], which distinguishes SARAH from
SAG/SAGA.

2.2.2 Convergence

In general, we aim to bound the expected norm of the gradient for stochastic algorithms as follows.

E[||∇P (wτ )||2] ≤ ϵ (2)

The general convergence result imposes the same convexity assumption for fis as Definition 1.
Additionally, we require fis to be L−smooth (Lipschitz continuous gradient) as follows.

Definition 2. For fi : Rd → R, i ∈ [n], is L-smooth if and only if there exists a constant L > 0
such that

||∇fi(w)−∇fi(w′)|| ≤ L||w − w′||,∀w,w′ ∈ Rd

Under these assumptions, SARAH shows a sublinear convergence rate.

Corollary 1. Suppose that each fi conforms with Definitions 1 and 2. For Algorithm 2 within a

single outer iteration with the learning rate η =
√

2
L(m+1) where m ≥ 2L− 1 is the total number of

iterations, then ||∇P (wt)||2 converges sublinearly in expectation with a rate of
√

2L
m+1 , and therefore,

the total complexity to achieve an ϵ-accurate solution defined by Equation 2 is O(n+ 1/ϵ2).

For the general convex case, it can be shown that with appropriate choice of learning and
rate and inner loops based on the data, the total complexity to achieve an ϵ-accuracy solution for
Equation 2 is O((n+ (1/ϵ)) log 1/ϵ).

A further assumption of strong convexity imposed on fis can improve convergence of SARAH.

Definition 3. The function P : Rd → R, is µ-strongly convex if and only if there exists a constant
µ > 0 such that ∀w,w′ ∈ Rd,

P (w) ≥ P (w′) +∇P (w′)T (w − w′) +
µ

2
||w − w′||2

Assuming fis are strongly convex in addition to regular convexity assumption and L-smooth,
we have the following.

Theorem 2. For fis convex, L-smooth, and µ-strongly convex, choosing η and µ such that

σm
def
=

1

µη(m+ 1)
+

ηL

2− ηL
< 1 (3)
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we have

E[||∇P (w̃s||2||] ≤ (σm)s||∇P (w̃0)||2

This result implies that the variance bound σs
m on the expectation of the norm squared gradient

after s outer loops is smaller than the equivalent variance bound after s loops αm for SVRG.

σm
def
=

1

µη(m+ 1)
+

ηL

2− ηL
<

1

µη(1− 2Lη)m
+

1
1

2ηL − 1
= αm

Both methods converge with rate O((n + L/µ) log(1/ϵ)), however SARAH’s best theoretical con-
vergence rate can use a higher learning rate than SVRG.

3 Numerical Experiments

The purpose of the numerical experiment will be to evaluate general performance of ADAM and
SARAH on real data and to illustrate a bias-variance tradeoff between SVRG and SARAH. We
use the ”Wine Quality” dataset from the UC Irvine Machine Learning Repository [4]. The data
are measurements of wine characteristics (features) used to predict wine quality scores. There are
n = 6497 instances and m = 11 features. The experiements will use a simple least squares linear
regression objective, assuming a system with data A and response b is of the form Ax = b.

min
x
||Ax− b||2

The least squares objective was chosen because it is strongly convex. x∗ was computed separately
using scipy.optimize.lsq_linear with tolerance set to 1e− 10.

ADAM SARAH SVRG

Parameters time Parameters time Parameters time

β1 = 0.9, β2 = 0.999, α = 0.001, batch = 10 6.37s η = 1
2.1·L ,m = 3248, s = 20 6.51s η = 1

5·L ,m = 3248, s = 20 6.49s

Figure 1: Exp. A — 64970 total iterations

See Figures 1 and 2 for settings and computation time. The two examples chosen illustrate
some high level takeaways. In terms of per-iteration computational performance, both ADAM and
SARAH are virtually identical to SVRG, though ADAM can become slightly slower for increased
batch sizes. SARAH and SVRG are limited in flexibility for learning rate with this data since L is
large and learning rate is O( 1L). Both are descending, but are moving extremely slowly toward x∗,
and the larger learning rate for SARAH hardly presents an advantage. We can see benefit of the

6



ADAM SARAH SVRG

Parameters time Parameters time Parameters time

β1 = 0.9, β2 = 0.999, α = 0.001, batch = 10 38.6s η = 1
2.1·L ,m = 194910, s = 2 38.8s η = 1

5·L ,m = 194910, s = 2 38.5s

Figure 2: Exp. B — 389820 total iterations

adaptive learning rate of ADAM for both Exp A and B; it is moving toward it much faster and it
continues to descend as iterations increase (||xt − x∗|| vs. epochs).

Comparing SARAH and SVRG, we run the inner loop for half an epoch in Exp. A and for 30
epochs in Exp. B. The parameter choice in Exp. B adheres with Equation 3. Note that for this
data, the iterations required for an ϵ accurate convergence with SARAH, for a reasonable choice of
ϵ, was prohibitive. In both Exp. A and B, ||xt−xt−1|| is clearly smoother for SARAH than SVRG,
however we observe that the number of effective passes over the data in the inner loop can matter.
In both the ||Axt − b|| and ||xt − x∗|| plots, SARAH will stray away from the optimal solution due
to bias after around 4 epochs. It is ultimately corrected by the second outer loop step, but we can
see how the biased steps of the inner loop can cause SARAH drift, whereas SVRG continues to
descend. As is the reality of statistics, we are trading variance for bias.

4 Conclusion and Future Direction

The findings in the numerical experiment highlight the advantages of the adaptive learning rate
of ADAM, and some possible shortcomings of SARAH when compared against SVRG. ADAM is
easy, straightforward, and doesn’t require detailed parameter tuning. SARAH is more sensitive to
its parameters, and where it has theoretical advantages in variance reduction, it has demonstrable
tradeoffs with bias. Both methods clearly reduce the variance in steps for their implementations
of stochastic descent, each in different ways. Future efforts should test these algorithms with
different data of varying characteristics in size and sparsity, as well as with different objective
functions. Additionally, variants of these algorithms like SARAH+, SARAH-M, and AdaMax
could be compared against these methods, as well as others in the same class of stochastic first-
order optimization methods, see literature review section and references for suggestions.
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Appendix A Algorithms

Algorithm 1 The ADAM algorithm computes a batch stochastic gradient to compute momentum
and RMSProp vectors at each timestep, with a bias correction step accounting for first and second
moment estimates. Model parameters are updated using this recursive gradient information.

Require: parameters w, stochastic objective function fi(w)
Require: learning rate η, exponential decay rates β1, β2 ∈ [0, 1), tolerance ϵ
Initialize: initial parameter vector w0, initial 1st moment vector m0 ← 0, initial 2nd moment
vector v0 ← 0, initial timestep t← 0
while wt is not converged do

t← t+ 1
gt ← ∇wft(wt−1) (batch gradient at iteration t)
mt ← β1 ·mt−1 + (1− β1) · gt ([Monentum] udpate baised first moment estimate)
vt ← β2 · vt−1 + (1− β2) · g2t ([RMSProp] udpate baised second raw moment estimate)
m̂t ← mt/(1− βt

1) ([Monentum] bias-corrected first moment estimate)
v̂t ← vt/(1− βt

2) ([RMSProp] bias-corrected second raw moment estimate)
wt ← wt−1 − η · m̂t/(

√
v̂t + ϵ) ([Momentum + RMSProp] update parameters)

end while
return wt

Algorithm 2 The SARAH algorithm is identical to SVRG except for the SARAH update, which
modifies the stochastic gradient estimate to use recursive gradient estimate information rather than
the initialized gradient to update the gradient estimate in the inner loop.

Require: objective function f(w)
Require: learning rate η > 0, inner loop size m, outer loop size s
Initialize: initial parameter vector w̃0

Iterate:
for s = 1, 2, ... do

w0 = w̃s−1

v0 =
1
n

∑n
i=1∇fi(w0) (outer loop full gradient computation)

w1 = w0 − ηv0 (outer loop parameter update)
for t = 1, ...,m− 1 do

Sample it uniformly at random from [n]
vt = ∇fit(wt)−∇fit(wt−1) + vt−1 (SARAH update)
wt+1 = wt − ηvt (inner loop parameter update)

end for
Set w̃s = wt with t chosen uniformly at random from {0, 1, ...,m}

end for
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